Cheng Wang, Dandan Chen, Shou Wu, Wei Zhou, Xiaoyang Chen, Qing Zhang, Li Wang
{"title":"Dietary supplementation with Neolamarckia cadamba leaf extract improves broiler meat quality by enhancing antioxidant capacity and regulating metabolites","authors":"Cheng Wang, Dandan Chen, Shou Wu, Wei Zhou, Xiaoyang Chen, Qing Zhang, Li Wang","doi":"10.1016/j.aninu.2024.01.011","DOIUrl":null,"url":null,"abstract":"This study was to evaluate the effect of supplementing the diet of broilers with leaf extract (NCLE) on meat quality by evaluating antioxidant parameters and the expression of genes in the p38 mitogen-activated protein kinase/nuclear factor-erythroid 2-related factor 2/antioxidant responsive element (p38 MAPK/Nrf2/ARE) signaling pathway, coupled with LC–MS-based metabolomic analysis. A total of 480 one-day-old male broilers were randomly allocated to four treatment groups—a control (CON) group, which was fed a basal diet, and three NCLE treatment groups, which were fed the basal diet supplemented with 100, 200, or 400 mg/kg NCLE (N1, N2, and N3 groups, respectively) for 42 d. Compared with the CON group, meat quality was improved in the N2 and N3 groups, as evidenced by the higher pH ( < 0.05) and lower shear force ( < 0.05) in breast muscle (BM) and lower drip loss at 48 h ( < 0.05) in leg muscle (LM). Moreover, BM antioxidant capacity was significantly enhanced in the N3 group, characterized by an increase in the total antioxidant capacity (T-AOC), the concentrations of glutathione peroxidase (GSH-Px) and catalase (CAT), and the relative mRNA expression of , extracellular-signal regulated kinase (), c-Jun N-terminal kinase (), , , and ( < 0.05). Similarly, LM in the N3 group displayed higher T-AOC, increased GSH-Px and CAT concentrations, reduced malonaldehyde contents ( < 0.05), and upregulation of the relative mRNA levels of , , heme oxygenase, , and superoxide dismutase () ( < 0.05). Metabolomics analysis revealed that D-arabinono-1,4-lactone and lyso-PAF C-16-d4 were negatively correlated with shear force and cooking loss ( < 0.05) and displayed increased abundance in BM of the N3 group. L-Serine levels were upregulated while D-fructose 1,6-diphosphate contents were downregulated in the three NCLE groups. Finally, the differential metabolites in both BM and LM were involved in amino acid metabolism pathways. Our results indicated that NCLE supplementation improved meat quality by enhancing antioxidant enzyme activities, promoting the expression of genes in the p38 MAPK/Nrf2/ARE signaling pathway, and regulating amino acid metabolism. The optimal NCLE concentration was found to be 400 mg/kg.","PeriodicalId":8184,"journal":{"name":"Animal Nutrition","volume":"47 1","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animal Nutrition","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.aninu.2024.01.011","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
This study was to evaluate the effect of supplementing the diet of broilers with leaf extract (NCLE) on meat quality by evaluating antioxidant parameters and the expression of genes in the p38 mitogen-activated protein kinase/nuclear factor-erythroid 2-related factor 2/antioxidant responsive element (p38 MAPK/Nrf2/ARE) signaling pathway, coupled with LC–MS-based metabolomic analysis. A total of 480 one-day-old male broilers were randomly allocated to four treatment groups—a control (CON) group, which was fed a basal diet, and three NCLE treatment groups, which were fed the basal diet supplemented with 100, 200, or 400 mg/kg NCLE (N1, N2, and N3 groups, respectively) for 42 d. Compared with the CON group, meat quality was improved in the N2 and N3 groups, as evidenced by the higher pH ( < 0.05) and lower shear force ( < 0.05) in breast muscle (BM) and lower drip loss at 48 h ( < 0.05) in leg muscle (LM). Moreover, BM antioxidant capacity was significantly enhanced in the N3 group, characterized by an increase in the total antioxidant capacity (T-AOC), the concentrations of glutathione peroxidase (GSH-Px) and catalase (CAT), and the relative mRNA expression of , extracellular-signal regulated kinase (), c-Jun N-terminal kinase (), , , and ( < 0.05). Similarly, LM in the N3 group displayed higher T-AOC, increased GSH-Px and CAT concentrations, reduced malonaldehyde contents ( < 0.05), and upregulation of the relative mRNA levels of , , heme oxygenase, , and superoxide dismutase () ( < 0.05). Metabolomics analysis revealed that D-arabinono-1,4-lactone and lyso-PAF C-16-d4 were negatively correlated with shear force and cooking loss ( < 0.05) and displayed increased abundance in BM of the N3 group. L-Serine levels were upregulated while D-fructose 1,6-diphosphate contents were downregulated in the three NCLE groups. Finally, the differential metabolites in both BM and LM were involved in amino acid metabolism pathways. Our results indicated that NCLE supplementation improved meat quality by enhancing antioxidant enzyme activities, promoting the expression of genes in the p38 MAPK/Nrf2/ARE signaling pathway, and regulating amino acid metabolism. The optimal NCLE concentration was found to be 400 mg/kg.
Animal NutritionAgricultural and Biological Sciences-Animal Science and Zoology
CiteScore
7.40
自引率
3.20%
发文量
172
审稿时长
12 weeks
期刊介绍:
Animal Nutrition encompasses the full gamut of animal nutritional sciences and reviews including, but not limited to, fundamental aspects of animal nutrition such as nutritional requirements, metabolic studies, body composition, energetics, immunology, neuroscience, microbiology, genetics and molecular and cell biology related to nutrition, and more applied aspects of animal nutrition, such as raw material evaluation, feed additives, nutritive value of novel ingredients and feed safety.