Automated Anomaly Detection on European XFEL Klystrons

Antonin Sulc, Annika Eichler, Tim Wilksen
{"title":"Automated Anomaly Detection on European XFEL Klystrons","authors":"Antonin Sulc, Annika Eichler, Tim Wilksen","doi":"arxiv-2405.12391","DOIUrl":null,"url":null,"abstract":"High-power multi-beam klystrons represent a key component to amplify RF to\ngenerate the accelerating field of the superconducting radio frequency (SRF)\ncavities at European XFEL. Exchanging these high-power components takes time\nand effort, thus it is necessary to minimize maintenance and downtime and at\nthe same time maximize the device's operation. In an attempt to explore the\nbehavior of klystrons using machine learning, we completed a series of\nexperiments on our klystrons to determine various operational modes and conduct\nfeature extraction and dimensionality reduction to extract the most valuable\ninformation about a normal operation. To analyze recorded data we used\nstate-of-the-art data-driven learning techniques and recognized the most\npromising components that might help us better understand klystron operational\nstates and identify early on possible faults or anomalies.","PeriodicalId":501318,"journal":{"name":"arXiv - PHYS - Accelerator Physics","volume":"60 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Accelerator Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.12391","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

High-power multi-beam klystrons represent a key component to amplify RF to generate the accelerating field of the superconducting radio frequency (SRF) cavities at European XFEL. Exchanging these high-power components takes time and effort, thus it is necessary to minimize maintenance and downtime and at the same time maximize the device's operation. In an attempt to explore the behavior of klystrons using machine learning, we completed a series of experiments on our klystrons to determine various operational modes and conduct feature extraction and dimensionality reduction to extract the most valuable information about a normal operation. To analyze recorded data we used state-of-the-art data-driven learning techniques and recognized the most promising components that might help us better understand klystron operational states and identify early on possible faults or anomalies.
欧洲 XFEL Klystrons 上的自动异常检测
高功率多波束 klystrons 是放大射频以产生欧洲 XFEL 超导射频(SRF)空腔加速场的关键部件。更换这些大功率组件需要花费大量时间和精力,因此有必要尽量减少维护和停机时间,同时最大限度地延长设备的运行时间。为了利用机器学习探索 klystrons 的行为,我们在我们的 klystrons 上完成了一系列实验,以确定各种运行模式,并进行特征提取和降维,以提取有关正常运行的最有价值的信息。为了分析记录的数据,我们使用了最先进的数据驱动学习技术,并识别出最有可能帮助我们更好地理解 klystron 运行状态并及早发现可能的故障或异常的组件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信