Effect of TiC/Bi on Self-Lubricating Properties of Al–Bi-TiC Alloy

IF 2.9 3区 工程技术 Q2 ENGINEERING, CHEMICAL
Jilin Miao, Yanguo Yin, Congmin Li, Ming Xu, Rongrong Li, Xiaoliang Fang, Shan Huang, Qi Chen
{"title":"Effect of TiC/Bi on Self-Lubricating Properties of Al–Bi-TiC Alloy","authors":"Jilin Miao,&nbsp;Yanguo Yin,&nbsp;Congmin Li,&nbsp;Ming Xu,&nbsp;Rongrong Li,&nbsp;Xiaoliang Fang,&nbsp;Shan Huang,&nbsp;Qi Chen","doi":"10.1007/s11249-024-01868-y","DOIUrl":null,"url":null,"abstract":"<div><p>According to the comparative experiments on friction and wear of Al–TiC, Al–Bi (RC) and Al–Bi–TiC alloys, the friction-reduction and wear-resistance mechanisms of TiC/Bi were systematically investigated. The alloys were examined via the scanning electron microscope equipped with an energy dispersive spectrometer and a shape-measuring laser microscope (VK-X100). Basing the achievements, the Bi-phase accumulates on the friction surface with gradual enrichment, possessing anti-friction and self-lubrication on the friction surface. The stable TiC/Bi self-lubricating layer of Al–Bi–TiC alloy make the values of the wear measurements reduce from 82.2 mg to 26.7 mg in 2 h. Meanwhile, TiC particles have uniform load capacity and interfacial pinning properties, which solve the peeling off from the worn surface of Bi-phase.</p></div>","PeriodicalId":806,"journal":{"name":"Tribology Letters","volume":"72 3","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tribology Letters","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11249-024-01868-y","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

According to the comparative experiments on friction and wear of Al–TiC, Al–Bi (RC) and Al–Bi–TiC alloys, the friction-reduction and wear-resistance mechanisms of TiC/Bi were systematically investigated. The alloys were examined via the scanning electron microscope equipped with an energy dispersive spectrometer and a shape-measuring laser microscope (VK-X100). Basing the achievements, the Bi-phase accumulates on the friction surface with gradual enrichment, possessing anti-friction and self-lubrication on the friction surface. The stable TiC/Bi self-lubricating layer of Al–Bi–TiC alloy make the values of the wear measurements reduce from 82.2 mg to 26.7 mg in 2 h. Meanwhile, TiC particles have uniform load capacity and interfacial pinning properties, which solve the peeling off from the worn surface of Bi-phase.

Abstract Image

TiC/Bi 对 Al-Bi-TiC 合金自润滑性能的影响
根据 Al-TiC、Al-Bi(RC)和 Al-Bi-TiC 合金的摩擦和磨损对比实验,系统地研究了 TiC/Bi 的减摩和耐磨机理。通过配备了能量色散光谱仪和形状测量激光显微镜(VK-X100)的扫描电子显微镜对合金进行了检测。研究结果表明,双相在摩擦表面逐渐富集,在摩擦表面具有减摩和自润滑作用。稳定的 TiC/Bi 自润滑层使 Al-Bi-TiC 合金的磨损测量值在 2 h 内从 82.2 mg 降至 26.7 mg,同时 TiC 颗粒具有均匀的承载能力和界面针刺特性,解决了 Bi-phase 从磨损表面剥离的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Tribology Letters
Tribology Letters 工程技术-工程:化工
CiteScore
5.30
自引率
9.40%
发文量
116
审稿时长
2.5 months
期刊介绍: Tribology Letters is devoted to the development of the science of tribology and its applications, particularly focusing on publishing high-quality papers at the forefront of tribological science and that address the fundamentals of friction, lubrication, wear, or adhesion. The journal facilitates communication and exchange of seminal ideas among thousands of practitioners who are engaged worldwide in the pursuit of tribology-based science and technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信