{"title":"Pythia: An Edge-First Agent for State Prediction in High-Dimensional Environments","authors":"Andreas Karatzas;Iraklis Anagnostopoulos","doi":"10.1109/LES.2024.3403090","DOIUrl":null,"url":null,"abstract":"Modern deep learning agents usually operate in low-dimensional environments. They process pixel input, do not offer insights into their thought process, and require significant power and computational resources. These characteristics make them inapplicable for embedded devices. In this letter, we present Pythia, an edge-first framework that uses latent imagination to handle complex environments efficiently and envision future agent states. It utilizes a vector quantized variational autoencoder to reduce the high-dimensional features into a low-dimensional space, making it ideal for modern embedded devices. Moreover, Pythia offers human interpretable feedback and scales well with respect to the design space. Pythia surpassed the other state-of-the-art models in prediction accuracy on both intrinsic and extrinsic metrics.","PeriodicalId":56143,"journal":{"name":"IEEE Embedded Systems Letters","volume":"16 4","pages":"473-476"},"PeriodicalIF":1.7000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Embedded Systems Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10535437/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
Modern deep learning agents usually operate in low-dimensional environments. They process pixel input, do not offer insights into their thought process, and require significant power and computational resources. These characteristics make them inapplicable for embedded devices. In this letter, we present Pythia, an edge-first framework that uses latent imagination to handle complex environments efficiently and envision future agent states. It utilizes a vector quantized variational autoencoder to reduce the high-dimensional features into a low-dimensional space, making it ideal for modern embedded devices. Moreover, Pythia offers human interpretable feedback and scales well with respect to the design space. Pythia surpassed the other state-of-the-art models in prediction accuracy on both intrinsic and extrinsic metrics.
期刊介绍:
The IEEE Embedded Systems Letters (ESL), provides a forum for rapid dissemination of latest technical advances in embedded systems and related areas in embedded software. The emphasis is on models, methods, and tools that ensure secure, correct, efficient and robust design of embedded systems and their applications.