Shenghong Yan, Bo Chen, Caiwang Tan, Xiaoguo Song, Guodong Wang
{"title":"A data-driven time-sequence feature-based composite network of time-distributed CNN-LSTM for detecting pore defects in laser penetration welding","authors":"Shenghong Yan, Bo Chen, Caiwang Tan, Xiaoguo Song, Guodong Wang","doi":"10.1007/s10845-024-02391-6","DOIUrl":null,"url":null,"abstract":"<p>The pore in laser penetration welding significantly deteriorates the mechanical property, and is an important criterion for evaluating the product quality. The intelligent diagnosis of welding can guide the optimization of process parameters to inhibit the pore formation. Considering that the signals in laser welding have time-sequence features and abundant implicitness information may cause high computational effort and information misidentify, an intelligent pore defect diagnosis method based on time–frequency feature extraction and a combined neural network of Convolutional Neural Networks (CNN) and Long short-term memory (LSTM) was proposed. Firstly, the visual signal results of vapor plume demonstrated that the pore formation was accompanied by irregular and continuous variation in vapor plume morphology during the subsequent period. Secondly, this denoising, decomposition, and restructuring of signals were performed by wavelet packet transform, and it was found that the sustaining fluctuation of frequency could localize the pore formation in the corresponding position of weld metal. Therefore, the signal was finely segmented to construct a cube time–frequency spectrogram data with the time-sequence characteristics. Finally, a combined classification model of CNN and LSTM was constructed for recognizing the temporal-spatial information of cube spectrogram data, realizing the online monitoring of pore defect. The results indicated that the proposed method was a promising solution for monitoring pore defect in laser penetration welding and improving product quality.</p>","PeriodicalId":16193,"journal":{"name":"Journal of Intelligent Manufacturing","volume":"48 1","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10845-024-02391-6","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The pore in laser penetration welding significantly deteriorates the mechanical property, and is an important criterion for evaluating the product quality. The intelligent diagnosis of welding can guide the optimization of process parameters to inhibit the pore formation. Considering that the signals in laser welding have time-sequence features and abundant implicitness information may cause high computational effort and information misidentify, an intelligent pore defect diagnosis method based on time–frequency feature extraction and a combined neural network of Convolutional Neural Networks (CNN) and Long short-term memory (LSTM) was proposed. Firstly, the visual signal results of vapor plume demonstrated that the pore formation was accompanied by irregular and continuous variation in vapor plume morphology during the subsequent period. Secondly, this denoising, decomposition, and restructuring of signals were performed by wavelet packet transform, and it was found that the sustaining fluctuation of frequency could localize the pore formation in the corresponding position of weld metal. Therefore, the signal was finely segmented to construct a cube time–frequency spectrogram data with the time-sequence characteristics. Finally, a combined classification model of CNN and LSTM was constructed for recognizing the temporal-spatial information of cube spectrogram data, realizing the online monitoring of pore defect. The results indicated that the proposed method was a promising solution for monitoring pore defect in laser penetration welding and improving product quality.
期刊介绍:
The Journal of Nonlinear Engineering aims to be a platform for sharing original research results in theoretical, experimental, practical, and applied nonlinear phenomena within engineering. It serves as a forum to exchange ideas and applications of nonlinear problems across various engineering disciplines. Articles are considered for publication if they explore nonlinearities in engineering systems, offering realistic mathematical modeling, utilizing nonlinearity for new designs, stabilizing systems, understanding system behavior through nonlinearity, optimizing systems based on nonlinear interactions, and developing algorithms to harness and leverage nonlinear elements.