A Note on Weakly Semiprime Ideals and Their Relationship to Prime Radical in Noncommutative Rings

IF 1.3 4区 数学 Q1 MATHEMATICS
Alaa Abouhalaka
{"title":"A Note on Weakly Semiprime Ideals and Their Relationship to Prime Radical in Noncommutative Rings","authors":"Alaa Abouhalaka","doi":"10.1155/2024/9142090","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce the concept of weakly semiprime ideals and weakly <span><svg height=\"6.1673pt\" style=\"vertical-align:-0.2063904pt\" version=\"1.1\" viewbox=\"-0.0498162 -5.96091 6.6501 6.1673\" width=\"6.6501pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g></svg>-</span>systems in noncommutative rings. We establish the equivalence between an ideal <svg height=\"8.68572pt\" style=\"vertical-align:-0.0498209pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 8.15071 8.68572\" width=\"8.15071pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g></svg> being a weakly semiprime ideal and <svg height=\"8.98583pt\" style=\"vertical-align:-0.3499308pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 29.8029 8.98583\" width=\"29.8029pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,11.057,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,21.593,0)\"><use xlink:href=\"#g113-81\"></use></g></svg> being a weakly <span><svg height=\"6.1673pt\" style=\"vertical-align:-0.2063904pt\" version=\"1.1\" viewbox=\"-0.0498162 -5.96091 6.6501 6.1673\" width=\"6.6501pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-111\"></use></g></svg>-</span>system. We provide alternative definitions and explore the properties of weakly semiprime ideals. Additionally, we investigate scenarios where all ideals in a given ring are weakly semiprime and demonstrate that in Noetherian rings, where every ideal is weakly semiprime, the prime radical and the Jacobson radical coincide.","PeriodicalId":54214,"journal":{"name":"Journal of Mathematics","volume":"68 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1155/2024/9142090","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we introduce the concept of weakly semiprime ideals and weakly -systems in noncommutative rings. We establish the equivalence between an ideal being a weakly semiprime ideal and being a weakly -system. We provide alternative definitions and explore the properties of weakly semiprime ideals. Additionally, we investigate scenarios where all ideals in a given ring are weakly semiprime and demonstrate that in Noetherian rings, where every ideal is weakly semiprime, the prime radical and the Jacobson radical coincide.
关于非交换环中的弱半素数理想及其与素根的关系的说明
本文介绍了非交换环中弱半理想和弱-系统的概念。我们建立了弱半枚举理想与弱-系统之间的等价关系。我们提供了弱半整数理想的替代定义,并探讨了弱半整数理想的性质。此外,我们还研究了给定环中所有理想都是弱半枚举的情况,并证明在诺特环中,每个理想都是弱半枚举,质根和雅各布森根重合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Mathematics
Journal of Mathematics Mathematics-General Mathematics
CiteScore
2.50
自引率
14.30%
发文量
0
期刊介绍: Journal of Mathematics is a broad scope journal that publishes original research articles as well as review articles on all aspects of both pure and applied mathematics. As well as original research, Journal of Mathematics also publishes focused review articles that assess the state of the art, and identify upcoming challenges and promising solutions for the community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信