Geometric Classifications of Perfect Fluid Space-Time Admit Conformal Ricci-Bourguignon Solitons

IF 1.3 4区 数学 Q1 MATHEMATICS
Noura Alhouiti, Soumendu Roy, Santu Dey, Fatemah Mofarreh, Akram Ali, Yanlin Li
{"title":"Geometric Classifications of Perfect Fluid Space-Time Admit Conformal Ricci-Bourguignon Solitons","authors":"Noura Alhouiti, Soumendu Roy, Santu Dey, Fatemah Mofarreh, Akram Ali, Yanlin Li","doi":"10.1155/2024/6674726","DOIUrl":null,"url":null,"abstract":"This paper is dedicated to the study of the geometric composition of a perfect fluid space-time with a conformal Ricci-Bourguignon soliton, which is the extended version of the soliton to the Ricci-Bourguignon flow. Here, we have delineated the conditions for conformal Ricci-Bourguignon soliton to be expanding, steady, or shrinking. We have studied certain curvature conditions on the spacetime that admit conformal Ricci-Bourguignon soliton. We have also discussed conformal Ricci-Bourguignon soliton on some special types of perfect fluid spacetime such as dust fluid, dark fluid, and radiation era.","PeriodicalId":54214,"journal":{"name":"Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1155/2024/6674726","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper is dedicated to the study of the geometric composition of a perfect fluid space-time with a conformal Ricci-Bourguignon soliton, which is the extended version of the soliton to the Ricci-Bourguignon flow. Here, we have delineated the conditions for conformal Ricci-Bourguignon soliton to be expanding, steady, or shrinking. We have studied certain curvature conditions on the spacetime that admit conformal Ricci-Bourguignon soliton. We have also discussed conformal Ricci-Bourguignon soliton on some special types of perfect fluid spacetime such as dust fluid, dark fluid, and radiation era.
完美流体时空的几何分类可容纳共形里奇-布尔吉农孤子
本文致力于研究完美流体时空与共形里奇-布尔基尼孤子的几何构成,共形里奇-布尔基尼孤子是对里奇-布尔基尼流孤子的扩展版本。在这里,我们划分了共形里奇-布尔吉尼孤子膨胀、稳定或收缩的条件。我们研究了接纳共形里奇-布尔吉尼孤子的时空的某些曲率条件。我们还讨论了完美流体时空中一些特殊类型的共形里奇-布尔基尼孤子,如尘埃流体、暗流体和辐射时代。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Mathematics
Journal of Mathematics Mathematics-General Mathematics
CiteScore
2.50
自引率
14.30%
发文量
0
期刊介绍: Journal of Mathematics is a broad scope journal that publishes original research articles as well as review articles on all aspects of both pure and applied mathematics. As well as original research, Journal of Mathematics also publishes focused review articles that assess the state of the art, and identify upcoming challenges and promising solutions for the community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信