Susana Barbosa, Maria Eduarda Silva, Denis-Didier Rousseau
{"title":"Characterisation of Dansgaard-Oeschger events in palaeoclimate time series using the Matrix Profile","authors":"Susana Barbosa, Maria Eduarda Silva, Denis-Didier Rousseau","doi":"10.5194/npg-2024-13","DOIUrl":null,"url":null,"abstract":"<strong>Abstract.</strong> Palaeoclimate time series, reflecting the state of Earth's climate in the distant past, display occasionally very large and rapid shifts, evidencing abrupt climate variability. The identification and characterisation of these abrupt transitions in palaeoclimate records is of particular interest as it allows the understanding of millennial climate variability and the identification of potential tipping points in the context of current climate change. Methods that are able to characterise these events in an objective and automatic way, in a single time series or across two proxy records, are therefore of particular interest. In our study the matrix profile approach is used to describe Dansgaard-Oeschger (DO) events, abrupt warmings detected in Greenland ice core, and Northern Hemisphere marine and continental records. The results indicate that canonical events DO-19 and DO-20, occurring at around 72 and 76 ka, are the most similar events over the past 110,000 years. These transitions are characterised by matching transitions corresponding to events DO-1, DO-8 and DO-12. These transitions are abrupt, resulting in a rapid shift to warmer conditions, followed by a gradual return to cold conditions. The joint analysis of the δ<sup>18</sup>O and Ca<sup>2+</sup> time series indicates that the transition corresponding to the DO-19 event is the most similar event across the two time series.","PeriodicalId":54714,"journal":{"name":"Nonlinear Processes in Geophysics","volume":"130 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Processes in Geophysics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/npg-2024-13","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract. Palaeoclimate time series, reflecting the state of Earth's climate in the distant past, display occasionally very large and rapid shifts, evidencing abrupt climate variability. The identification and characterisation of these abrupt transitions in palaeoclimate records is of particular interest as it allows the understanding of millennial climate variability and the identification of potential tipping points in the context of current climate change. Methods that are able to characterise these events in an objective and automatic way, in a single time series or across two proxy records, are therefore of particular interest. In our study the matrix profile approach is used to describe Dansgaard-Oeschger (DO) events, abrupt warmings detected in Greenland ice core, and Northern Hemisphere marine and continental records. The results indicate that canonical events DO-19 and DO-20, occurring at around 72 and 76 ka, are the most similar events over the past 110,000 years. These transitions are characterised by matching transitions corresponding to events DO-1, DO-8 and DO-12. These transitions are abrupt, resulting in a rapid shift to warmer conditions, followed by a gradual return to cold conditions. The joint analysis of the δ18O and Ca2+ time series indicates that the transition corresponding to the DO-19 event is the most similar event across the two time series.
期刊介绍:
Nonlinear Processes in Geophysics (NPG) is an international, inter-/trans-disciplinary, non-profit journal devoted to breaking the deadlocks often faced by standard approaches in Earth and space sciences. It therefore solicits disruptive and innovative concepts and methodologies, as well as original applications of these to address the ubiquitous complexity in geoscience systems, and in interacting social and biological systems. Such systems are nonlinear, with responses strongly non-proportional to perturbations, and show an associated extreme variability across scales.