Future changes in synoptic-scale conditions causing widespread heavy precipitation events over Japan

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Shiori Sugimoto, Sachiho A. Adachi, Rui Ito, Chieko Suzuki
{"title":"Future changes in synoptic-scale conditions causing widespread heavy precipitation events over Japan","authors":"Shiori Sugimoto, Sachiho A. Adachi, Rui Ito, Chieko Suzuki","doi":"10.2151/sola.2024-027","DOIUrl":null,"url":null,"abstract":"</p><p>To identify and characterize the synoptic-scale precipitation systems causing widespread heavy precipitation events over Japan and to evaluate their possible future changes, annual maximum of area-averaged daily and 5-day accumulated precipitation for 720 years were analyzed for both historical and 4 K warming climates using a large ensemble dataset with 5 km horizontal resolution. According to statistical cluster analysis, the approach of tropical cyclones is the primary factor causing widespread heavy precipitation events in both the historical and 4 K warming experiments, although the Baiu front and migratory extratropical cyclones also contribute to event occurrence. The frequency of tropical-cyclone-associated events is lower in the 4 K warming climate compared with the historical experiment because the occurrence frequency of tropical cyclones is lower over the western North Pacific. The decrease in frequency of tropical-cyclone-associated events leads to a relative increase in the frequency of events associated with other precipitation systems (i.e., the Baiu front and migratory extratropical cyclones) under the warming climate. The anomalous moisture supply in the 4 K warming experiment causes the widespread heavy precipitation derived from the Baiu front and migratory extratropical cyclones to intensify to reach a magnitude comparable to that of historical-climate tropical-cyclone-associated events.</p>\n<p></p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.2151/sola.2024-027","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

To identify and characterize the synoptic-scale precipitation systems causing widespread heavy precipitation events over Japan and to evaluate their possible future changes, annual maximum of area-averaged daily and 5-day accumulated precipitation for 720 years were analyzed for both historical and 4 K warming climates using a large ensemble dataset with 5 km horizontal resolution. According to statistical cluster analysis, the approach of tropical cyclones is the primary factor causing widespread heavy precipitation events in both the historical and 4 K warming experiments, although the Baiu front and migratory extratropical cyclones also contribute to event occurrence. The frequency of tropical-cyclone-associated events is lower in the 4 K warming climate compared with the historical experiment because the occurrence frequency of tropical cyclones is lower over the western North Pacific. The decrease in frequency of tropical-cyclone-associated events leads to a relative increase in the frequency of events associated with other precipitation systems (i.e., the Baiu front and migratory extratropical cyclones) under the warming climate. The anomalous moisture supply in the 4 K warming experiment causes the widespread heavy precipitation derived from the Baiu front and migratory extratropical cyclones to intensify to reach a magnitude comparable to that of historical-climate tropical-cyclone-associated events.

造成日本上空大范围强降水事件的同步尺度条件的未来变化
为了确定造成日本上空大范围强降水事件的同步尺度降水系统及其特征,并评估其未来可能发生的变化,利用水平分辨率为 5 公里的大型集合数据集,分析了历史气候和 4 K 暖化气候下 720 年的年最大区域平均日降水量和 5 天累计降水量。根据统计聚类分析,在历史气候和 4 K 升温实验中,热带气旋的逼近是造成大范围强降水事件的主要因素,尽管白云前线和迁移性外热带气旋也对事件的发生有影响。与历史实验相比,4 K 暖化气候中热带气旋相关事件的发生频率较低,这是因为热带气旋在北太平洋西部的发生频率较低。在气候变暖的情况下,热带气旋相关事件发生频率的降低导致与其他降水系统(即白云锋和移行外热带气旋)相关事件发生频率的相对增加。4 K 暖化实验中的异常水汽供应导致来自贝尤锋面和移栖性外热带气旋的大范围强降水增强,达到与历史气候下热带气旋相关事件相当的强度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信