{"title":"Microstructures and mechanical properties of TiAl joint brazed with Ti-Mn-Fe-Ni-Zr system medium-entropy filler alloy","authors":"Zhiliang Zhai, Xinyu Ren, Yonglai Shang, Yaoyong Cheng, Haishui Ren, Huaping Xiong, Yongjuan Jing","doi":"10.1007/s40194-024-01785-7","DOIUrl":null,"url":null,"abstract":"<div><p>A five-element medium-entropy filler alloy with composition of Ti-(18 ~ 24)Mn-(12 ~ 18)Fe-(3 ~ 8)Ni-(3 ~ 8)Zr (wt.%) was proposed for vacuum brazing of TiAl-based alloy. The filler alloy was mainly composed of Ti-based solid solution and Ti-(Fe, Mn) compound dissolved with elements of Ni and Zr. The filler alloy ingot was ground into powder and then the filler powder was preset into the V-shaped groove butt joint with a gap of 50 μm. The Ti-Mn-Fe-Ni-Zr brazing alloy showed the liquidus temperature of 1060.1 °C, and also presented excellent wettability on TiAl substrate at 1110 °C for 10 min. The brazed joint mainly consisted of γ-TiAl, α<sub>2</sub>-Ti<sub>3</sub>Al, and residual brazing filler reaction phase. The brazing condition of 1210 °C/45 min exhibited the maximum joint thickness of 308 μm and the maximum area percentage of γ-TiAl phase of 33.77%, with almost elimination of residual brazing filler reaction phase within the joint, and meanwhile offered the maximum room-temperature tensile strength of 418 MPa, 70.85% of the base alloy. The joint fracture showed a mixed mode of intergranular and transgranular fracture.</p></div>","PeriodicalId":809,"journal":{"name":"Welding in the World","volume":"68 9","pages":"2511 - 2520"},"PeriodicalIF":2.4000,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Welding in the World","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40194-024-01785-7","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
A five-element medium-entropy filler alloy with composition of Ti-(18 ~ 24)Mn-(12 ~ 18)Fe-(3 ~ 8)Ni-(3 ~ 8)Zr (wt.%) was proposed for vacuum brazing of TiAl-based alloy. The filler alloy was mainly composed of Ti-based solid solution and Ti-(Fe, Mn) compound dissolved with elements of Ni and Zr. The filler alloy ingot was ground into powder and then the filler powder was preset into the V-shaped groove butt joint with a gap of 50 μm. The Ti-Mn-Fe-Ni-Zr brazing alloy showed the liquidus temperature of 1060.1 °C, and also presented excellent wettability on TiAl substrate at 1110 °C for 10 min. The brazed joint mainly consisted of γ-TiAl, α2-Ti3Al, and residual brazing filler reaction phase. The brazing condition of 1210 °C/45 min exhibited the maximum joint thickness of 308 μm and the maximum area percentage of γ-TiAl phase of 33.77%, with almost elimination of residual brazing filler reaction phase within the joint, and meanwhile offered the maximum room-temperature tensile strength of 418 MPa, 70.85% of the base alloy. The joint fracture showed a mixed mode of intergranular and transgranular fracture.
期刊介绍:
The journal Welding in the World publishes authoritative papers on every aspect of materials joining, including welding, brazing, soldering, cutting, thermal spraying and allied joining and fabrication techniques.