On the Characteristic Polynomial of the Eigenvalue Moduli of Random Normal Matrices

IF 2.3 2区 数学 Q1 MATHEMATICS
Sung-Soo Byun, Christophe Charlier
{"title":"On the Characteristic Polynomial of the Eigenvalue Moduli of Random Normal Matrices","authors":"Sung-Soo Byun, Christophe Charlier","doi":"10.1007/s00365-024-09689-x","DOIUrl":null,"url":null,"abstract":"<p>We study the characteristic polynomial <span>\\(p_{n}(x)=\\prod _{j=1}^{n}(|z_{j}|-x)\\)</span> where the <span>\\(z_{j}\\)</span> are drawn from the Mittag–Leffler ensemble, i.e. a two-dimensional determinantal point process which generalizes the Ginibre point process. We obtain precise large <i>n</i> asymptotics for the moment generating function <span>\\(\\mathbb {E}[e^{\\frac{u}{\\pi } \\, \\text {Im\\,}\\ln p_{n}(r)}e^{a \\, \\text {Re\\,}\\ln p_{n}(r)}]\\)</span>, in the case where <i>r</i> is in the bulk, <span>\\(u \\in \\mathbb {R}\\)</span> and <span>\\(a \\in \\mathbb {N}\\)</span>. This expectation involves an <span>\\(n \\times n\\)</span> determinant whose weight is supported on the whole complex plane, is rotation-invariant, and has both jump- and root-type singularities along the circle centered at 0 of radius <i>r</i>. This “circular\" root-type singularity differs from earlier works on Fisher–Hartwig singularities, and surprisingly yields a new kind of ingredient in the asymptotics, the so-called <i>associated Hermite polynomials</i>.</p>","PeriodicalId":50621,"journal":{"name":"Constructive Approximation","volume":"54 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Constructive Approximation","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00365-024-09689-x","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study the characteristic polynomial \(p_{n}(x)=\prod _{j=1}^{n}(|z_{j}|-x)\) where the \(z_{j}\) are drawn from the Mittag–Leffler ensemble, i.e. a two-dimensional determinantal point process which generalizes the Ginibre point process. We obtain precise large n asymptotics for the moment generating function \(\mathbb {E}[e^{\frac{u}{\pi } \, \text {Im\,}\ln p_{n}(r)}e^{a \, \text {Re\,}\ln p_{n}(r)}]\), in the case where r is in the bulk, \(u \in \mathbb {R}\) and \(a \in \mathbb {N}\). This expectation involves an \(n \times n\) determinant whose weight is supported on the whole complex plane, is rotation-invariant, and has both jump- and root-type singularities along the circle centered at 0 of radius r. This “circular" root-type singularity differs from earlier works on Fisher–Hartwig singularities, and surprisingly yields a new kind of ingredient in the asymptotics, the so-called associated Hermite polynomials.

论随机正态矩阵特征值模的特征多项式
我们研究了特征多项式 \(p_{n}(x)=\prod _{j=1}^{n}(|z_{j}|-x)\) ,其中 \(z_{j}\) 来自 Mittag-Leffler 集合,即二维行列式点过程,它概括了 Ginibre 点过程。我们得到了矩生成函数 \(\mathbb {E}[e^{\frac{u}{\pi }) 的精确大 n 渐近线。\(text{Im\,}\ln p_{n}(r)}e^{a\, \text {Re\,}\ln p_{n}(r)}]\), in the case where r is in the bulk, \(u\in \mathbb {R}\) and\(a\in \mathbb {N}\).这种期望涉及到一个(n 次 n)行列式,它的权重在整个复平面上得到支持,是旋转不变的,并且沿着半径为 r 的以 0 为圆心的圆具有跳跃式和根式奇点。这种 "圆 "根式奇点不同于早期关于费雪-哈特维格奇点的研究,并且令人惊讶地在渐近中产生了一种新的成分,即所谓的相关赫米特多项式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.50
自引率
3.70%
发文量
35
审稿时长
1 months
期刊介绍: Constructive Approximation is an international mathematics journal dedicated to Approximations and Expansions and related research in computation, function theory, functional analysis, interpolation spaces and interpolation of operators, numerical analysis, space of functions, special functions, and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信