{"title":"Bumble bee diet breadth increases with local abundance and phenophase duration, not intraspecific variation in body size","authors":"Will R. Glenny, Justin B. Runyon, Laura A. Burkle","doi":"10.1007/s00442-024-05560-9","DOIUrl":null,"url":null,"abstract":"<p>Patterns of abundance across space and time, and intraspecific variation in body size, are two species attributes known to influence diet breadth and the structure of interaction networks. Yet, the relative influence of these attributes on diet breadth is often assumed to be equal among taxonomic groups, and the relationship between intraspecific variation in body size on interaction patterns is frequently neglected. We observed bee–flower interactions in multiple locations across Montana, USA, for two growing seasons and measured spatial and temporal patterns of abundance, along with interspecific and intraspecific variation in body size for prevalent species. We predicted that the association between spatial and temporal patterns of abundance and intraspecific variation in body size, and diet breadth, would be stronger for bumble bee compared to non-bumble bee species, because species with flexible diets and long activity periods can interact with more food items. Bumble bees had higher local abundance, occurred in many local communities, more intraspecific variation in body size, and longer phenophases compared to non-bumble bee species, but only local abundance and phenophase duration had a stronger positive association with the diet breadth of bumble bee compared to non-bumble bee species. Communities with a higher proportion of bumble bees also had higher intraspecific variation in body size at the network-level, and network-level intraspecific variation in body size was positively correlated with diet generalization. Our findings highlight that the association between species attributes and diet breadth changes depending on the taxonomic group, with implications for the structure of interaction networks.</p>","PeriodicalId":19473,"journal":{"name":"Oecologia","volume":"46 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oecologia","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s00442-024-05560-9","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Patterns of abundance across space and time, and intraspecific variation in body size, are two species attributes known to influence diet breadth and the structure of interaction networks. Yet, the relative influence of these attributes on diet breadth is often assumed to be equal among taxonomic groups, and the relationship between intraspecific variation in body size on interaction patterns is frequently neglected. We observed bee–flower interactions in multiple locations across Montana, USA, for two growing seasons and measured spatial and temporal patterns of abundance, along with interspecific and intraspecific variation in body size for prevalent species. We predicted that the association between spatial and temporal patterns of abundance and intraspecific variation in body size, and diet breadth, would be stronger for bumble bee compared to non-bumble bee species, because species with flexible diets and long activity periods can interact with more food items. Bumble bees had higher local abundance, occurred in many local communities, more intraspecific variation in body size, and longer phenophases compared to non-bumble bee species, but only local abundance and phenophase duration had a stronger positive association with the diet breadth of bumble bee compared to non-bumble bee species. Communities with a higher proportion of bumble bees also had higher intraspecific variation in body size at the network-level, and network-level intraspecific variation in body size was positively correlated with diet generalization. Our findings highlight that the association between species attributes and diet breadth changes depending on the taxonomic group, with implications for the structure of interaction networks.
期刊介绍:
Oecologia publishes innovative ecological research of international interest. We seek reviews, advances in methodology, and original contributions, emphasizing the following areas:
Population ecology, Plant-microbe-animal interactions, Ecosystem ecology, Community ecology, Global change ecology, Conservation ecology,
Behavioral ecology and Physiological Ecology.
In general, studies that are purely descriptive, mathematical, documentary, and/or natural history will not be considered.