Tensor algebras over the Steenrod algebra

Pub Date : 2024-05-22 DOI:10.1016/j.jpaa.2024.107730
H.E.A. Campbell, Paul Selick, Jie Wu
{"title":"Tensor algebras over the Steenrod algebra","authors":"H.E.A. Campbell,&nbsp;Paul Selick,&nbsp;Jie Wu","doi":"10.1016/j.jpaa.2024.107730","DOIUrl":null,"url":null,"abstract":"<div><p>It is known that unstable Steenrod module structure on the polynomial algebra <span><math><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>[</mo><msub><mrow><mi>t</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>t</mi></mrow><mrow><mi>N</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>]</mo><mo>≅</mo><msup><mrow><mi>H</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><msup><mrow><mo>(</mo><mi>R</mi><msup><mrow><mi>P</mi></mrow><mrow><mo>∞</mo></mrow></msup><mo>)</mo></mrow><mrow><mi>N</mi></mrow></msup><mo>;</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span> obtained by forgetting the multiplication is isomorphic to that arising from a twisted action of <span><math><msup><mrow><mi>Sq</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>. We show that the same theorem holds for tensor algebras. As in the abelian case, the result is applied to produce a decomposition of the tensor algebra into “weight spaces”.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022404924001270","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

It is known that unstable Steenrod module structure on the polynomial algebra F2[t0,,tN1]H((RP)N;F2) obtained by forgetting the multiplication is isomorphic to that arising from a twisted action of Sq1. We show that the same theorem holds for tensor algebras. As in the abelian case, the result is applied to produce a decomposition of the tensor algebra into “weight spaces”.

分享
查看原文
斯泰恩德代数上的张量代数
众所周知,多项式代数 F2[t0,...,tN-1]≅H⁎((RP∞)N;F2) 上不稳定的 Steenrod 模块结构与 Sq1 的扭曲作用所产生的模块结构同构。我们将证明同样的定理也适用于张量代数。与无性方程的情况一样,这一结果可用于将张量代数分解为 "权重空间"。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信