Spider silk inspired polymer electrolyte with well bonded interface and fast kinetics for solid-state lithium-ion batteries

IF 21.1 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yanbo Wang , Zhuoxi Wu , Rong Zhang , Ze Chen , Zhiquan Wei , Yue Hou , Pei Li , Shuo Yang , Zhaodong Huang , Nan Li , Chunyi Zhi
{"title":"Spider silk inspired polymer electrolyte with well bonded interface and fast kinetics for solid-state lithium-ion batteries","authors":"Yanbo Wang ,&nbsp;Zhuoxi Wu ,&nbsp;Rong Zhang ,&nbsp;Ze Chen ,&nbsp;Zhiquan Wei ,&nbsp;Yue Hou ,&nbsp;Pei Li ,&nbsp;Shuo Yang ,&nbsp;Zhaodong Huang ,&nbsp;Nan Li ,&nbsp;Chunyi Zhi","doi":"10.1016/j.mattod.2024.05.001","DOIUrl":null,"url":null,"abstract":"<div><p>Due to their superior safety and stability, solid-state electrolytes (SSEs) are a promising alternative to flammable liquid electrolytes in lithium-ion batteries. However, the poor solid–solid contact at the SSEs/electrodes interface remains a significant challenge. To address this issue, inspired by spider silk, we develop a composite polymer electrolyte (SPLZO), which is highly adhesive due to the designed rich hydrogel bond network, containing a supramolecular poly (urethane-urea) (SPU), lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and Li<sub>6.5</sub>La<sub>3</sub>Zr<sub>1.5</sub>Ta<sub>0.5</sub>O<sub>12</sub>. The abundant hydrogen bonds mainly enabled inherently strong adhesion to ensure intimate electrolyte–electrode contact with low interfacial impedance. Besides, the soft polymer segments facilitate Li<sup>+</sup> transport, and the hard components enhance the LiTFSI dissociation and accelerate Li<sup>+</sup> motion, resulting in a high ionic conductivity of 1.67 × 10<sup>−4</sup> S cm<sup>−1</sup>. The significantly improved interface contact and high ionic conductivity lead to a decent capacity and cycling performance of the fabricated solid-state lithium-ion batteries. Moreover, the designed SPLZO electrolyte exhibits remarkable deformability, and the flexible lithium-ion battery demonstrates outstanding mechanical flexibility and stability with negligible capacity loss when subjected to various dynamic deformations. This adhesive SSE design strategy opens new possibilities for promoting interfaces in solid-state batteries.</p></div>","PeriodicalId":387,"journal":{"name":"Materials Today","volume":null,"pages":null},"PeriodicalIF":21.1000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369702124000828","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Due to their superior safety and stability, solid-state electrolytes (SSEs) are a promising alternative to flammable liquid electrolytes in lithium-ion batteries. However, the poor solid–solid contact at the SSEs/electrodes interface remains a significant challenge. To address this issue, inspired by spider silk, we develop a composite polymer electrolyte (SPLZO), which is highly adhesive due to the designed rich hydrogel bond network, containing a supramolecular poly (urethane-urea) (SPU), lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and Li6.5La3Zr1.5Ta0.5O12. The abundant hydrogen bonds mainly enabled inherently strong adhesion to ensure intimate electrolyte–electrode contact with low interfacial impedance. Besides, the soft polymer segments facilitate Li+ transport, and the hard components enhance the LiTFSI dissociation and accelerate Li+ motion, resulting in a high ionic conductivity of 1.67 × 10−4 S cm−1. The significantly improved interface contact and high ionic conductivity lead to a decent capacity and cycling performance of the fabricated solid-state lithium-ion batteries. Moreover, the designed SPLZO electrolyte exhibits remarkable deformability, and the flexible lithium-ion battery demonstrates outstanding mechanical flexibility and stability with negligible capacity loss when subjected to various dynamic deformations. This adhesive SSE design strategy opens new possibilities for promoting interfaces in solid-state batteries.

Abstract Image

用于固态锂离子电池的具有良好结合界面和快速动力学特性的蜘蛛丝启发聚合物电解质
固态电解质(SSE)具有卓越的安全性和稳定性,是锂离子电池中易燃液体电解质的理想替代品。然而,固态电解质/电极界面的固-固接触不良仍然是一个重大挑战。为了解决这个问题,我们受蜘蛛丝的启发,开发了一种复合聚合物电解质(SPLZO),由于设计了丰富的水凝胶键网络,这种电解质具有很强的粘附性,包含超分子聚(尿烷-脲)(SPU)、双(三氟甲磺酰)亚胺锂(LiTFSI)和 Li6.5La3Zr1.5Ta0.5O12。丰富的氢键主要促成了固有的强粘附性,从而确保了电解质与电极的亲密接触和较低的界面阻抗。此外,软聚合物段促进了 Li+ 的传输,而硬组分则增强了 LiTFSI 的解离并加速了 Li+ 的运动,从而产生了 1.67 × 10-4 S cm-1 的高离子电导率。界面接触的明显改善和高离子电导率使制造出的固态锂离子电池具有良好的容量和循环性能。此外,所设计的 SPLZO 电解质具有出色的可变形性,柔性锂离子电池具有出色的机械柔韧性和稳定性,在承受各种动态变形时的容量损失几乎可以忽略不计。这种粘合性 SSE 设计策略为促进固态电池界面的发展提供了新的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Today
Materials Today 工程技术-材料科学:综合
CiteScore
36.30
自引率
1.20%
发文量
237
审稿时长
23 days
期刊介绍: Materials Today is the leading journal in the Materials Today family, focusing on the latest and most impactful work in the materials science community. With a reputation for excellence in news and reviews, the journal has now expanded its coverage to include original research and aims to be at the forefront of the field. We welcome comprehensive articles, short communications, and review articles from established leaders in the rapidly evolving fields of materials science and related disciplines. We strive to provide authors with rigorous peer review, fast publication, and maximum exposure for their work. While we only accept the most significant manuscripts, our speedy evaluation process ensures that there are no unnecessary publication delays.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信