Ultrahigh energy density in dielectric nanocomposites by modulating nanofiller orientation and polymer crystallization behavior

Ru Guo, Hang Luo, Di Zhai, Zhida Xiao, Haoran Xie, Yuan Liu, Fan Wang, Xun Jiang, Dou Zhang
{"title":"Ultrahigh energy density in dielectric nanocomposites by modulating nanofiller orientation and polymer crystallization behavior","authors":"Ru Guo,&nbsp;Hang Luo,&nbsp;Di Zhai,&nbsp;Zhida Xiao,&nbsp;Haoran Xie,&nbsp;Yuan Liu,&nbsp;Fan Wang,&nbsp;Xun Jiang,&nbsp;Dou Zhang","doi":"10.1016/j.apmate.2024.100212","DOIUrl":null,"url":null,"abstract":"<div><p>High-energy density dielectrics for electrostatic capacitors are in urgent demand for advanced electronics and electrical power systems. Poly(vinylidene fluoride) (PVDF) based nanocomposites have attracted remarkable attention by intrinsic high polarization, flexibility, low density, and outstanding processability. However, it is still challenging to achieve significant improvement in energy density due to the common contradictions between electric polarization and breakdown strength. Here, we proposed a novel facile strategy that simultaneously achieves the construction of in-plane oriented BaTiO<sub>3</sub> nanowires and crystallization modulation of PVDF matrix via an <em>in-situ</em> uniaxial stretch process. The polar phase transition and enhanced Young's modulus facilitate the synergetic improvement of electric polarization and voltage endurance capability for PVDF matrix. Additionally, the aligned distribution of nanowires could reduce the contact probability of nanowire tips, thus alleviating electric field concentration and hindering the conductive path. Finally, a record high energy density of 38.3 ​J/cm<sup>3</sup> and 40.9 ​J/cm<sup>3</sup> are achieved for single layer and optimized sandwich-structured nanocomposite, respectively. This work provides a unique structural design and universal method for dielectric nanocomposites with ultrahigh energy density, which presents a promising prospect of practical application for modern energy storage systems.</p></div>","PeriodicalId":7283,"journal":{"name":"Advanced Powder Materials","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772834X24000435/pdfft?md5=d2764fc449217ba05309871b76fdad65&pid=1-s2.0-S2772834X24000435-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Powder Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772834X24000435","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

High-energy density dielectrics for electrostatic capacitors are in urgent demand for advanced electronics and electrical power systems. Poly(vinylidene fluoride) (PVDF) based nanocomposites have attracted remarkable attention by intrinsic high polarization, flexibility, low density, and outstanding processability. However, it is still challenging to achieve significant improvement in energy density due to the common contradictions between electric polarization and breakdown strength. Here, we proposed a novel facile strategy that simultaneously achieves the construction of in-plane oriented BaTiO3 nanowires and crystallization modulation of PVDF matrix via an in-situ uniaxial stretch process. The polar phase transition and enhanced Young's modulus facilitate the synergetic improvement of electric polarization and voltage endurance capability for PVDF matrix. Additionally, the aligned distribution of nanowires could reduce the contact probability of nanowire tips, thus alleviating electric field concentration and hindering the conductive path. Finally, a record high energy density of 38.3 ​J/cm3 and 40.9 ​J/cm3 are achieved for single layer and optimized sandwich-structured nanocomposite, respectively. This work provides a unique structural design and universal method for dielectric nanocomposites with ultrahigh energy density, which presents a promising prospect of practical application for modern energy storage systems.

Abstract Image

通过调节纳米填料取向和聚合物结晶行为实现介电纳米复合材料的超高能量密度
先进电子和电力系统急需用于静电电容器的高能量密度电介质。基于聚偏二氟乙烯(PVDF)的纳米复合材料因其固有的高极化性、柔韧性、低密度和出色的可加工性而备受关注。然而,由于电极化和击穿强度之间的常见矛盾,要实现能量密度的显著提高仍具有挑战性。在此,我们提出了一种新颖而简便的策略,通过原位单轴拉伸工艺同时实现了面内取向 BaTiO3 纳米线的构建和 PVDF 基体的结晶调制。极性相变和增强的杨氏模量促进了 PVDF 基体电极化和耐电压能力的协同改善。此外,纳米线的排列分布可以降低纳米线尖端的接触概率,从而减轻电场集中和阻碍导电路径。最后,单层和优化夹层结构纳米复合材料的能量密度分别达到了创纪录的 38.3 J/cm3 和 40.9 J/cm3。这项工作为具有超高能量密度的介电纳米复合材料提供了独特的结构设计和通用方法,为现代储能系统的实际应用带来了广阔前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
33.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信