Development and Validation of an Automatic Ultrawide-Field Fundus Imaging Enhancement System for Facilitating Clinical Diagnosis: A Cross-Sectional Multicenter Study
{"title":"Development and Validation of an Automatic Ultrawide-Field Fundus Imaging Enhancement System for Facilitating Clinical Diagnosis: A Cross-Sectional Multicenter Study","authors":"","doi":"10.1016/j.eng.2024.05.006","DOIUrl":null,"url":null,"abstract":"<div><div>In ophthalmology, the quality of fundus images is critical for accurate diagnosis, both in clinical practice and in artificial intelligence (AI)-assisted diagnostics. Despite the broad view provided by ultrawide-field (UWF) imaging, pseudocolor images may conceal critical lesions necessary for precise diagnosis. To address this, we introduce UWF-Net, a sophisticated image enhancement algorithm that takes disease characteristics into consideration. Using the Fudan University ultra-wide-field image (FDUWI) dataset, which includes 11 294 Optos pseudocolor and 2415 Zeiss true-color UWF images, each of which is rigorously annotated, UWF-Net combines global style modeling with feature-level lesion enhancement. Pathological consistency loss is also applied to maintain fundus feature integrity, significantly improving image quality. Quantitative and qualitative evaluations demonstrated that UWF-Net outperforms existing methods such as contrast limited adaptive histogram equalization (CLAHE) and structure and illumination constrained generative adversarial network (StillGAN), delivering superior retinal image quality, higher quality scores, and preserved feature details after enhancement. In disease classification tasks, images enhanced by UWF-Net showed notable improvements when processed with existing classification systems over those enhanced by StillGAN, demonstrating a 4.62% increase in sensitivity (SEN) and a 3.97% increase in accuracy (ACC). In a multicenter clinical setting, UWF-Net-enhanced images were preferred by ophthalmologic technicians and doctors, and yielded a significant reduction in diagnostic time ((13.17 ± 8.40) s for UWF-Net enhanced images vs (19.54 ± 12.40) s for original images) and an increase in diagnostic accuracy (87.71% for UWF-Net enhanced images vs 80.40% for original images). Our research verifies that UWF-Net markedly improves the quality of UWF imaging, facilitating better clinical outcomes and more reliable AI-assisted disease classification. The clinical integration of UWF-Net holds great promise for enhancing diagnostic processes and patient care in ophthalmology.</div></div>","PeriodicalId":11783,"journal":{"name":"Engineering","volume":null,"pages":null},"PeriodicalIF":10.1000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095809924002662","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In ophthalmology, the quality of fundus images is critical for accurate diagnosis, both in clinical practice and in artificial intelligence (AI)-assisted diagnostics. Despite the broad view provided by ultrawide-field (UWF) imaging, pseudocolor images may conceal critical lesions necessary for precise diagnosis. To address this, we introduce UWF-Net, a sophisticated image enhancement algorithm that takes disease characteristics into consideration. Using the Fudan University ultra-wide-field image (FDUWI) dataset, which includes 11 294 Optos pseudocolor and 2415 Zeiss true-color UWF images, each of which is rigorously annotated, UWF-Net combines global style modeling with feature-level lesion enhancement. Pathological consistency loss is also applied to maintain fundus feature integrity, significantly improving image quality. Quantitative and qualitative evaluations demonstrated that UWF-Net outperforms existing methods such as contrast limited adaptive histogram equalization (CLAHE) and structure and illumination constrained generative adversarial network (StillGAN), delivering superior retinal image quality, higher quality scores, and preserved feature details after enhancement. In disease classification tasks, images enhanced by UWF-Net showed notable improvements when processed with existing classification systems over those enhanced by StillGAN, demonstrating a 4.62% increase in sensitivity (SEN) and a 3.97% increase in accuracy (ACC). In a multicenter clinical setting, UWF-Net-enhanced images were preferred by ophthalmologic technicians and doctors, and yielded a significant reduction in diagnostic time ((13.17 ± 8.40) s for UWF-Net enhanced images vs (19.54 ± 12.40) s for original images) and an increase in diagnostic accuracy (87.71% for UWF-Net enhanced images vs 80.40% for original images). Our research verifies that UWF-Net markedly improves the quality of UWF imaging, facilitating better clinical outcomes and more reliable AI-assisted disease classification. The clinical integration of UWF-Net holds great promise for enhancing diagnostic processes and patient care in ophthalmology.
期刊介绍:
Engineering, an international open-access journal initiated by the Chinese Academy of Engineering (CAE) in 2015, serves as a distinguished platform for disseminating cutting-edge advancements in engineering R&D, sharing major research outputs, and highlighting key achievements worldwide. The journal's objectives encompass reporting progress in engineering science, fostering discussions on hot topics, addressing areas of interest, challenges, and prospects in engineering development, while considering human and environmental well-being and ethics in engineering. It aims to inspire breakthroughs and innovations with profound economic and social significance, propelling them to advanced international standards and transforming them into a new productive force. Ultimately, this endeavor seeks to bring about positive changes globally, benefit humanity, and shape a new future.