L. Ezquerro , R. Coimbra , B. Bauluz , C. Núñez-Lahuerta , T. Román-Berdiel , M. Moreno-Azanza
{"title":"Large dinosaur egg accumulations and their significance for understanding nesting behaviour","authors":"L. Ezquerro , R. Coimbra , B. Bauluz , C. Núñez-Lahuerta , T. Román-Berdiel , M. Moreno-Azanza","doi":"10.1016/j.gsf.2024.101872","DOIUrl":null,"url":null,"abstract":"<div><p>The accurate identification of dinosaur egg accumulations as nests or clutches is crucial for understanding the reproductive behaviour of these extinct species. However, existing methods often rely on the presence of complete eggs and embryo remains, and sedimentological criteria that are only applicable to well-structured sediments. In this study, we introduce an innovative approach to characterize egg accumulations in structureless sediments, where traditional nest structures may not be preserved. Our methodology employs a unique combination of sedimentological, taphonomic, geochemical, and geophysical proxies for the study of egg accumulations. We applied this approach to the egg accumulation from Paimogo (Jurassic, Portugal), traditionally interpreted as a nest. Our findings reveal that the Paimogo egg assemblage is a secondary deposit, resulting from a flooding event in a fluvial plain that dismantled several allosauroid and crocodylomorph clutches. The eggshell vapor conductance results, coupled with sedimentological evidence, suggest that allosauroid dinosaurs buried their eggs in the dry terrain of overbank areas close to a main channel during the breeding season, likely during the dry season to prevent the embryos from drowning. This research underscores the necessity of multidisciplinary approaches in interpreting egg accumulations and offers a novel methodology for studying these accumulations in structureless sediments. Our findings provide new insights into the breeding behaviour and nesting preferences of these extinct organisms, contributing to our understanding of dinosaur ecology.</p></div>","PeriodicalId":12711,"journal":{"name":"Geoscience frontiers","volume":"15 5","pages":"Article 101872"},"PeriodicalIF":8.5000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1674987124000963/pdfft?md5=9352493126309107a464c72532cb668d&pid=1-s2.0-S1674987124000963-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoscience frontiers","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674987124000963","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The accurate identification of dinosaur egg accumulations as nests or clutches is crucial for understanding the reproductive behaviour of these extinct species. However, existing methods often rely on the presence of complete eggs and embryo remains, and sedimentological criteria that are only applicable to well-structured sediments. In this study, we introduce an innovative approach to characterize egg accumulations in structureless sediments, where traditional nest structures may not be preserved. Our methodology employs a unique combination of sedimentological, taphonomic, geochemical, and geophysical proxies for the study of egg accumulations. We applied this approach to the egg accumulation from Paimogo (Jurassic, Portugal), traditionally interpreted as a nest. Our findings reveal that the Paimogo egg assemblage is a secondary deposit, resulting from a flooding event in a fluvial plain that dismantled several allosauroid and crocodylomorph clutches. The eggshell vapor conductance results, coupled with sedimentological evidence, suggest that allosauroid dinosaurs buried their eggs in the dry terrain of overbank areas close to a main channel during the breeding season, likely during the dry season to prevent the embryos from drowning. This research underscores the necessity of multidisciplinary approaches in interpreting egg accumulations and offers a novel methodology for studying these accumulations in structureless sediments. Our findings provide new insights into the breeding behaviour and nesting preferences of these extinct organisms, contributing to our understanding of dinosaur ecology.
Geoscience frontiersEarth and Planetary Sciences-General Earth and Planetary Sciences
CiteScore
17.80
自引率
3.40%
发文量
147
审稿时长
35 days
期刊介绍:
Geoscience Frontiers (GSF) is the Journal of China University of Geosciences (Beijing) and Peking University. It publishes peer-reviewed research articles and reviews in interdisciplinary fields of Earth and Planetary Sciences. GSF covers various research areas including petrology and geochemistry, lithospheric architecture and mantle dynamics, global tectonics, economic geology and fuel exploration, geophysics, stratigraphy and paleontology, environmental and engineering geology, astrogeology, and the nexus of resources-energy-emissions-climate under Sustainable Development Goals. The journal aims to bridge innovative, provocative, and challenging concepts and models in these fields, providing insights on correlations and evolution.