Federated learning energy saving through client selection

IF 3 3区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Filipe Maciel , Allan M. de Souza , Luiz F. Bittencourt , Leandro A. Villas , Torsten Braun
{"title":"Federated learning energy saving through client selection","authors":"Filipe Maciel ,&nbsp;Allan M. de Souza ,&nbsp;Luiz F. Bittencourt ,&nbsp;Leandro A. Villas ,&nbsp;Torsten Braun","doi":"10.1016/j.pmcj.2024.101948","DOIUrl":null,"url":null,"abstract":"<div><p>Contemporary applications leverage machine learning models to optimize performance, often necessitating data transmission to a remote server for training. However, this approach entails significant resource consumption. A privacy concern arises, which Federated Learning addresses through a cyclical process involving in-device training (local model update) and subsequent reporting to the server for aggregation (global model update). In each iteration of this cycle, termed a communication round, a client selection component determines participant devices contributing to global model enhancement. However, existing literature inadequately addresses scenarios where optimized energy consumption is imperative. This paper introduces an Energy Saving Client Selection (ESCS) mechanism, considering decision criteria such as battery level, training time capacity, and network quality. As a pertinent use case, classification scenarios are utilized to compare the performance of ESCS against other state-of-the-art approaches. The findings reveal that ESCS effectively conserves energy while maintaining optimal performance. This research contributes to the ongoing discourse on energy-efficient client selection strategies within the domain of Federated Learning.</p></div>","PeriodicalId":49005,"journal":{"name":"Pervasive and Mobile Computing","volume":"103 ","pages":"Article 101948"},"PeriodicalIF":3.0000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pervasive and Mobile Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1574119224000749","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Contemporary applications leverage machine learning models to optimize performance, often necessitating data transmission to a remote server for training. However, this approach entails significant resource consumption. A privacy concern arises, which Federated Learning addresses through a cyclical process involving in-device training (local model update) and subsequent reporting to the server for aggregation (global model update). In each iteration of this cycle, termed a communication round, a client selection component determines participant devices contributing to global model enhancement. However, existing literature inadequately addresses scenarios where optimized energy consumption is imperative. This paper introduces an Energy Saving Client Selection (ESCS) mechanism, considering decision criteria such as battery level, training time capacity, and network quality. As a pertinent use case, classification scenarios are utilized to compare the performance of ESCS against other state-of-the-art approaches. The findings reveal that ESCS effectively conserves energy while maintaining optimal performance. This research contributes to the ongoing discourse on energy-efficient client selection strategies within the domain of Federated Learning.

通过客户端选择实现联合学习节能
当代应用利用机器学习模型来优化性能,通常需要将数据传输到远程服务器进行训练。然而,这种方法需要消耗大量资源。Federated Learning 通过一个循环过程来解决隐私问题,该过程包括设备内训练(本地模型更新)和随后向服务器报告以进行汇总(全局模型更新)。在这一循环的每次迭代(称为一轮通信)中,客户端选择组件都会确定参与全局模型增强的设备。然而,现有文献对必须优化能耗的应用场景论述不足。本文介绍了一种节能客户端选择(ESCS)机制,考虑了电池电量、训练时间容量和网络质量等决策标准。作为一个相关的用例,本文利用分类场景将 ESCS 的性能与其他最先进的方法进行了比较。研究结果表明,ESCS 在保持最佳性能的同时有效地节约了能源。这项研究为联邦学习领域内正在进行的关于高能效客户端选择策略的讨论做出了贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Pervasive and Mobile Computing
Pervasive and Mobile Computing COMPUTER SCIENCE, INFORMATION SYSTEMS-TELECOMMUNICATIONS
CiteScore
7.70
自引率
2.30%
发文量
80
审稿时长
68 days
期刊介绍: As envisioned by Mark Weiser as early as 1991, pervasive computing systems and services have truly become integral parts of our daily lives. Tremendous developments in a multitude of technologies ranging from personalized and embedded smart devices (e.g., smartphones, sensors, wearables, IoTs, etc.) to ubiquitous connectivity, via a variety of wireless mobile communications and cognitive networking infrastructures, to advanced computing techniques (including edge, fog and cloud) and user-friendly middleware services and platforms have significantly contributed to the unprecedented advances in pervasive and mobile computing. Cutting-edge applications and paradigms have evolved, such as cyber-physical systems and smart environments (e.g., smart city, smart energy, smart transportation, smart healthcare, etc.) that also involve human in the loop through social interactions and participatory and/or mobile crowd sensing, for example. The goal of pervasive computing systems is to improve human experience and quality of life, without explicit awareness of the underlying communications and computing technologies. The Pervasive and Mobile Computing Journal (PMC) is a high-impact, peer-reviewed technical journal that publishes high-quality scientific articles spanning theory and practice, and covering all aspects of pervasive and mobile computing and systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信