MnS/MnO heterostructures with dual ion defects for high-performance aqueous magnesium ion capacitors

IF 15.8 1区 材料科学 Q1 METALLURGY & METALLURGICAL ENGINEERING
Minghui Liu , Mudi Li , Siwen Zhang , Yaxi Ding , Ying Sun , Jiazhuo Li , Haixi Gu , Bosi Yin , Hui Li , Tianyi Ma
{"title":"MnS/MnO heterostructures with dual ion defects for high-performance aqueous magnesium ion capacitors","authors":"Minghui Liu ,&nbsp;Mudi Li ,&nbsp;Siwen Zhang ,&nbsp;Yaxi Ding ,&nbsp;Ying Sun ,&nbsp;Jiazhuo Li ,&nbsp;Haixi Gu ,&nbsp;Bosi Yin ,&nbsp;Hui Li ,&nbsp;Tianyi Ma","doi":"10.1016/j.jma.2024.04.036","DOIUrl":null,"url":null,"abstract":"<div><div>The advancement of aqueous magnesium ion energy storage devices encounters limitations due to the substantial hydration radius of magnesium ions (Mg<sup>2+</sup>) and their strong electrostatic interaction with the primary material. Consequently, this study successfully developed a MnS/MnO heterostructure through a straightforward hydrothermal and annealing method, marking its initial application in aqueous magnesium ion capacitors (AMICs). The fabricated MnS/MnO heterostructure, characterized by S defects, also generates Mn defects via in-situ initiation of early electrochemical processes. This unique dual ion defects MnS/MnO heterostructure (DID-MnS/MnO) enables the transformation of MnS and MnO, initially not highly active electrochemically for Mg<sup>2+</sup>, into cathode materials exhibiting high electrochemical activity and superior performance. Moreover, DID-MnS/MnO enhances conductivity, improves the kinetics of surface redox reactions, and increases the diffusion rate of Mg<sup>2+</sup>. Furthermore, this study introduces a dual energy storage mechanism for DID-MnS/MnO, which, in conjunction with dual ion defects, offers additional active sites for Mg<sup>2+</sup> insertion/deinsertion in the host material, mitigating volume expansion and structural degradation during repeated charge-discharge cycles, thereby significantly enhancing cycling reversibility. As anticipated, using a three-electrode system, the developed DID-MnS/MnO demonstrated a discharge specific capacity of 237.9 mAh/g at a current density of 0.1 A/g. Remarkably, the constructed AMIC maintained a capacity retention rate of 94.3% after 10000 cycles at a current density of 1.0 A/g, with a specific capacitance of 165.7 F/g. Hence, DID-MnS/MnO offers insightful perspectives for designing alternative clean energy sources and is expected to contribute significantly to the advancement of the clean energy sector.</div></div>","PeriodicalId":16214,"journal":{"name":"Journal of Magnesium and Alloys","volume":"13 1","pages":"Pages 219-228"},"PeriodicalIF":15.8000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Magnesium and Alloys","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213956724001646","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

The advancement of aqueous magnesium ion energy storage devices encounters limitations due to the substantial hydration radius of magnesium ions (Mg2+) and their strong electrostatic interaction with the primary material. Consequently, this study successfully developed a MnS/MnO heterostructure through a straightforward hydrothermal and annealing method, marking its initial application in aqueous magnesium ion capacitors (AMICs). The fabricated MnS/MnO heterostructure, characterized by S defects, also generates Mn defects via in-situ initiation of early electrochemical processes. This unique dual ion defects MnS/MnO heterostructure (DID-MnS/MnO) enables the transformation of MnS and MnO, initially not highly active electrochemically for Mg2+, into cathode materials exhibiting high electrochemical activity and superior performance. Moreover, DID-MnS/MnO enhances conductivity, improves the kinetics of surface redox reactions, and increases the diffusion rate of Mg2+. Furthermore, this study introduces a dual energy storage mechanism for DID-MnS/MnO, which, in conjunction with dual ion defects, offers additional active sites for Mg2+ insertion/deinsertion in the host material, mitigating volume expansion and structural degradation during repeated charge-discharge cycles, thereby significantly enhancing cycling reversibility. As anticipated, using a three-electrode system, the developed DID-MnS/MnO demonstrated a discharge specific capacity of 237.9 mAh/g at a current density of 0.1 A/g. Remarkably, the constructed AMIC maintained a capacity retention rate of 94.3% after 10000 cycles at a current density of 1.0 A/g, with a specific capacitance of 165.7 F/g. Hence, DID-MnS/MnO offers insightful perspectives for designing alternative clean energy sources and is expected to contribute significantly to the advancement of the clean energy sector.

Abstract Image

用于高性能水性镁离子电容器的具有双离子缺陷的 MnS/MnO 异质结构
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Magnesium and Alloys
Journal of Magnesium and Alloys Engineering-Mechanics of Materials
CiteScore
20.20
自引率
14.80%
发文量
52
审稿时长
59 days
期刊介绍: The Journal of Magnesium and Alloys serves as a global platform for both theoretical and experimental studies in magnesium science and engineering. It welcomes submissions investigating various scientific and engineering factors impacting the metallurgy, processing, microstructure, properties, and applications of magnesium and alloys. The journal covers all aspects of magnesium and alloy research, including raw materials, alloy casting, extrusion and deformation, corrosion and surface treatment, joining and machining, simulation and modeling, microstructure evolution and mechanical properties, new alloy development, magnesium-based composites, bio-materials and energy materials, applications, and recycling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信