{"title":"Cyclicity of the 2-decomposed unramified Iwasawa module","authors":"Karim Boulajhaf, Ali Mouhib","doi":"10.1016/j.jnt.2024.04.015","DOIUrl":null,"url":null,"abstract":"<div><p>Let <em>k</em> be a real quadratic number field, and <span><math><msub><mrow><mi>k</mi></mrow><mrow><mo>∞</mo></mrow></msub></math></span> its cyclotomic <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-extension. We study the cyclicity of the Galois group <span><math><msubsup><mrow><mi>X</mi></mrow><mrow><mo>∞</mo></mrow><mrow><mo>′</mo></mrow></msubsup></math></span> over <span><math><msub><mrow><mi>k</mi></mrow><mrow><mo>∞</mo></mrow></msub></math></span> of the maximal abelian unramified 2-extension, in which all 2-adic primes of <span><math><msub><mrow><mi>k</mi></mrow><mrow><mo>∞</mo></mrow></msub></math></span> split completely. As consequence, we determine the complete list of real quadratic number fields for which <span><math><msubsup><mrow><mi>X</mi></mrow><mrow><mo>∞</mo></mrow><mrow><mo>′</mo></mrow></msubsup></math></span> is cyclic.</p><p>When <span><math><msubsup><mrow><mi>X</mi></mrow><mrow><mo>∞</mo></mrow><mrow><mo>′</mo></mrow></msubsup></math></span> is cyclic non-trivial, we give a new infinite family of real quadratic number fields, for which Greenberg's conjecture is valid.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022314X24001136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Let k be a real quadratic number field, and its cyclotomic -extension. We study the cyclicity of the Galois group over of the maximal abelian unramified 2-extension, in which all 2-adic primes of split completely. As consequence, we determine the complete list of real quadratic number fields for which is cyclic.
When is cyclic non-trivial, we give a new infinite family of real quadratic number fields, for which Greenberg's conjecture is valid.