Cyclicity of the 2-decomposed unramified Iwasawa module

Pub Date : 2024-05-20 DOI:10.1016/j.jnt.2024.04.015
Karim Boulajhaf, Ali Mouhib
{"title":"Cyclicity of the 2-decomposed unramified Iwasawa module","authors":"Karim Boulajhaf,&nbsp;Ali Mouhib","doi":"10.1016/j.jnt.2024.04.015","DOIUrl":null,"url":null,"abstract":"<div><p>Let <em>k</em> be a real quadratic number field, and <span><math><msub><mrow><mi>k</mi></mrow><mrow><mo>∞</mo></mrow></msub></math></span> its cyclotomic <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-extension. We study the cyclicity of the Galois group <span><math><msubsup><mrow><mi>X</mi></mrow><mrow><mo>∞</mo></mrow><mrow><mo>′</mo></mrow></msubsup></math></span> over <span><math><msub><mrow><mi>k</mi></mrow><mrow><mo>∞</mo></mrow></msub></math></span> of the maximal abelian unramified 2-extension, in which all 2-adic primes of <span><math><msub><mrow><mi>k</mi></mrow><mrow><mo>∞</mo></mrow></msub></math></span> split completely. As consequence, we determine the complete list of real quadratic number fields for which <span><math><msubsup><mrow><mi>X</mi></mrow><mrow><mo>∞</mo></mrow><mrow><mo>′</mo></mrow></msubsup></math></span> is cyclic.</p><p>When <span><math><msubsup><mrow><mi>X</mi></mrow><mrow><mo>∞</mo></mrow><mrow><mo>′</mo></mrow></msubsup></math></span> is cyclic non-trivial, we give a new infinite family of real quadratic number fields, for which Greenberg's conjecture is valid.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022314X24001136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let k be a real quadratic number field, and k its cyclotomic Z2-extension. We study the cyclicity of the Galois group X over k of the maximal abelian unramified 2-extension, in which all 2-adic primes of k split completely. As consequence, we determine the complete list of real quadratic number fields for which X is cyclic.

When X is cyclic non-trivial, we give a new infinite family of real quadratic number fields, for which Greenberg's conjecture is valid.

分享
查看原文
岩泽模块的 2 分解非ramified 循环性
设 k 是实二次数域,k∞ 是它的循环 Z2 扩展。我们研究了 k∞ 的最大无性无ramified 2-extension 的伽罗华群 X∞′ 的循环性,在这个循环中,k∞ 的所有 2-adic 素完全分裂。因此,我们确定了 X∞′ 是循环的实二次数域的完整列表。当 X∞′ 是非三循环时,我们给出了一个新的实二次数域无穷族,格林伯格的猜想对其是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信