Improving the accuracy of mechanistic models for dynamic batch distillation enabled by neural network: An industrial plant case

IF 3.7 3区 工程技术 Q2 ENGINEERING, CHEMICAL
{"title":"Improving the accuracy of mechanistic models for dynamic batch distillation enabled by neural network: An industrial plant case","authors":"","doi":"10.1016/j.cjche.2024.04.018","DOIUrl":null,"url":null,"abstract":"<div><p>Neural networks are often viewed as pure ‘black box’ models, lacking interpretability and extrapolation capabilities of pure mechanistic models. This work proposes a new approach that, with the help of neural networks, improves the conformity of the first-principal model to the actual plant. The final result is still a first-principal model rather than a hybrid model, which maintains the advantage of the high interpretability of first-principal model. This work better simulates industrial batch distillation which separates four components: water, ethylene glycol, diethylene glycol, and triethylene glycol. GRU (gated recurrent neural network) and LSTM (long short-term memory) were used to obtain empirical parameters of mechanistic model that are difficult to measure directly. These were used to improve the empirical processes in mechanistic model, thus correcting unreasonable model assumptions and achieving better predictability for batch distillation. The proposed method was verified using a case study from one industrial plant case, and the results show its advancement in improving model predictions and the potential to extend to other similar systems.</p></div>","PeriodicalId":9966,"journal":{"name":"Chinese Journal of Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1004954124001733","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Neural networks are often viewed as pure ‘black box’ models, lacking interpretability and extrapolation capabilities of pure mechanistic models. This work proposes a new approach that, with the help of neural networks, improves the conformity of the first-principal model to the actual plant. The final result is still a first-principal model rather than a hybrid model, which maintains the advantage of the high interpretability of first-principal model. This work better simulates industrial batch distillation which separates four components: water, ethylene glycol, diethylene glycol, and triethylene glycol. GRU (gated recurrent neural network) and LSTM (long short-term memory) were used to obtain empirical parameters of mechanistic model that are difficult to measure directly. These were used to improve the empirical processes in mechanistic model, thus correcting unreasonable model assumptions and achieving better predictability for batch distillation. The proposed method was verified using a case study from one industrial plant case, and the results show its advancement in improving model predictions and the potential to extend to other similar systems.

Abstract Image

利用神经网络提高动态批量蒸馏机械模型的准确性:工业工厂案例
神经网络通常被视为纯粹的 "黑箱 "模型,缺乏纯机械模型的可解释性和外推能力。这项工作提出了一种新方法,借助神经网络提高第一原理模型与实际植物的一致性。最终结果仍然是第一原理模型,而不是混合模型,这保持了第一原理模型可解释性强的优点。这项工作更好地模拟了分离水、乙二醇、二甘醇和三甘醇四种成分的工业批量蒸馏。利用 GRU(门控递归神经网络)和 LSTM(长短期记忆)获得了难以直接测量的机械模型的经验参数。这些参数被用来改进机械模型中的经验过程,从而纠正不合理的模型假设,实现批量精馏的更好可预测性。利用一个工业工厂的案例研究对所提出的方法进行了验证,结果表明该方法在改进模型预测方面具有先进性,并有可能推广到其他类似系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chinese Journal of Chemical Engineering
Chinese Journal of Chemical Engineering 工程技术-工程:化工
CiteScore
6.60
自引率
5.30%
发文量
4309
审稿时长
31 days
期刊介绍: The Chinese Journal of Chemical Engineering (Monthly, started in 1982) is the official journal of the Chemical Industry and Engineering Society of China and published by the Chemical Industry Press Co. Ltd. The aim of the journal is to develop the international exchange of scientific and technical information in the field of chemical engineering. It publishes original research papers that cover the major advancements and achievements in chemical engineering in China as well as some articles from overseas contributors. The topics of journal include chemical engineering, chemical technology, biochemical engineering, energy and environmental engineering and other relevant fields. Papers are published on the basis of their relevance to theoretical research, practical application or potential uses in the industry as Research Papers, Communications, Reviews and Perspectives. Prominent domestic and overseas chemical experts and scholars have been invited to form an International Advisory Board and the Editorial Committee. It enjoys recognition among Chinese academia and industry as a reliable source of information of what is going on in chemical engineering research, both domestic and abroad.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信