Yu. A. Kostitsyn, N. A. Krivolutskaya, A. V. Somsikova, M. O. Anosova, I. V. Kubrakova, N. D. Tolstykh, B. I. Gongalsky, I. A. Kuzmin
{"title":"Geochemical Markers of the Norilsk Ore-Bearing Intrusions: Case Study of the Maslovsky Deposit","authors":"Yu. A. Kostitsyn, N. A. Krivolutskaya, A. V. Somsikova, M. O. Anosova, I. V. Kubrakova, N. D. Tolstykh, B. I. Gongalsky, I. A. Kuzmin","doi":"10.1134/S0016702924700241","DOIUrl":null,"url":null,"abstract":"<p>The problem of identifying scarce PGE–Cu–Ni-bearing intrusions among the huge array of barren mafic bodies in the northwestern Siberian Platform has been faced by researchers for several decades. Its solution is usually based on the geological and geophysical methods. Geochemical studies including modern elemental and isotopic analytical data are much less frequently applied for this purpose. We applied such an approach to some Norilsk complex bodies containing sulfide mineralization. Using the Maslovsky deposit located in the Norilsk syncline as an example, we have demonstrated the characteristic features of ore-bearing rocks that can be used in the search for new promising targets. The rocks of the Maslovsky deposit were studied in two sections from boreholes OM-4 and OM-24. Their geochemical parameters fall within the ranges of ε<sub>Nd</sub> = 1.0 ± 1.0 and (La/Lu)<sub><i>n</i></sub> = 2.3 ± 0.8, which differ the magmatic bodies of the Norilsk district with unique sulfide ores from barren massifs. The <sup>87</sup>Sr/<sup>86</sup>Sr ratios in the representative gabbroic rocks from the vertical cross-sections of the Maslovsky deposit vary from 0.7056 to 0.7069. As PGEs are accumulated in the rocks, the Pd/Pt ratio increases from ~1 at clarke contents to ~3 in rich ores. No evidence of in situ assimilation by melts of silicate rocks was found.</p>","PeriodicalId":12781,"journal":{"name":"Geochemistry International","volume":"62 5","pages":"447 - 465"},"PeriodicalIF":0.7000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochemistry International","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1134/S0016702924700241","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The problem of identifying scarce PGE–Cu–Ni-bearing intrusions among the huge array of barren mafic bodies in the northwestern Siberian Platform has been faced by researchers for several decades. Its solution is usually based on the geological and geophysical methods. Geochemical studies including modern elemental and isotopic analytical data are much less frequently applied for this purpose. We applied such an approach to some Norilsk complex bodies containing sulfide mineralization. Using the Maslovsky deposit located in the Norilsk syncline as an example, we have demonstrated the characteristic features of ore-bearing rocks that can be used in the search for new promising targets. The rocks of the Maslovsky deposit were studied in two sections from boreholes OM-4 and OM-24. Their geochemical parameters fall within the ranges of εNd = 1.0 ± 1.0 and (La/Lu)n = 2.3 ± 0.8, which differ the magmatic bodies of the Norilsk district with unique sulfide ores from barren massifs. The 87Sr/86Sr ratios in the representative gabbroic rocks from the vertical cross-sections of the Maslovsky deposit vary from 0.7056 to 0.7069. As PGEs are accumulated in the rocks, the Pd/Pt ratio increases from ~1 at clarke contents to ~3 in rich ores. No evidence of in situ assimilation by melts of silicate rocks was found.
期刊介绍:
Geochemistry International is a peer reviewed journal that publishes articles on cosmochemistry; geochemistry of magmatic, metamorphic, hydrothermal, and sedimentary processes; isotope geochemistry; organic geochemistry; applied geochemistry; and chemistry of the environment. Geochemistry International provides readers with a unique opportunity to refine their understanding of the geology of the vast territory of the Eurasian continent. The journal welcomes manuscripts from all countries in the English or Russian language.