{"title":"Effects of acute stress on reward processing: A comprehensive meta-analysis of rodent and human studies","authors":"Martino Schettino , Valeria Tarmati , Paola Castellano , Valeria Gigli , Luca Carnevali , Simona Cabib , Cristina Ottaviani , Cristina Orsini","doi":"10.1016/j.ynstr.2024.100647","DOIUrl":null,"url":null,"abstract":"<div><p>Stressors can initiate a cascade of central and peripheral changes that modulate mesocorticolimbic dopaminergic circuits and, ultimately, behavioral response to rewards. Driven by the absence of conclusive evidence on this topic and the Research Domain Criteria framework, random-effects meta-analyses were adopted to quantify the effects of acute stressors on reward responsiveness, valuation, and learning in rodent and human subjects.</p><p>In rodents, acute stress reduced reward responsiveness (<em>g</em> = −1.43) and valuation (<em>g</em> = −0.32), while amplifying reward learning (<em>g</em> = 1.17). In humans, acute stress had marginal effects on valuation (<em>g</em> = 0.25), without affecting responsiveness and learning. Moderation analyses suggest that acute stress neither has unitary effects on reward processing in rodents nor in humans and that the duration of the stressor and specificity of reward experience (i.e., food vs drugs) may produce qualitatively and quantitatively different behavioral endpoints.</p><p>Subgroup analyses failed to reduce heterogeneity, which, together with the presence of publication bias, pose caution on the conclusions that can be drawn and point to the need of guidelines for the conduction of future studies in the field.</p></div>","PeriodicalId":19125,"journal":{"name":"Neurobiology of Stress","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352289524000432/pdfft?md5=99670d9ad52837144ea285d4c1bf4f65&pid=1-s2.0-S2352289524000432-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurobiology of Stress","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352289524000432","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Stressors can initiate a cascade of central and peripheral changes that modulate mesocorticolimbic dopaminergic circuits and, ultimately, behavioral response to rewards. Driven by the absence of conclusive evidence on this topic and the Research Domain Criteria framework, random-effects meta-analyses were adopted to quantify the effects of acute stressors on reward responsiveness, valuation, and learning in rodent and human subjects.
In rodents, acute stress reduced reward responsiveness (g = −1.43) and valuation (g = −0.32), while amplifying reward learning (g = 1.17). In humans, acute stress had marginal effects on valuation (g = 0.25), without affecting responsiveness and learning. Moderation analyses suggest that acute stress neither has unitary effects on reward processing in rodents nor in humans and that the duration of the stressor and specificity of reward experience (i.e., food vs drugs) may produce qualitatively and quantitatively different behavioral endpoints.
Subgroup analyses failed to reduce heterogeneity, which, together with the presence of publication bias, pose caution on the conclusions that can be drawn and point to the need of guidelines for the conduction of future studies in the field.
期刊介绍:
Neurobiology of Stress is a multidisciplinary journal for the publication of original research and review articles on basic, translational and clinical research into stress and related disorders. It will focus on the impact of stress on the brain from cellular to behavioral functions and stress-related neuropsychiatric disorders (such as depression, trauma and anxiety). The translation of basic research findings into real-world applications will be a key aim of the journal.
Basic, translational and clinical research on the following topics as they relate to stress will be covered:
Molecular substrates and cell signaling,
Genetics and epigenetics,
Stress circuitry,
Structural and physiological plasticity,
Developmental Aspects,
Laboratory models of stress,
Neuroinflammation and pathology,
Memory and Cognition,
Motivational Processes,
Fear and Anxiety,
Stress-related neuropsychiatric disorders (including depression, PTSD, substance abuse),
Neuropsychopharmacology.