{"title":"Electronic and magnetic properties of Mn-doped and Mn-X (F, Cl, Br, I) co-doped modulated monolayer SnSe2","authors":"Mengting Ma , Guili Liu , Guoying Zhang","doi":"10.1016/j.susc.2024.122511","DOIUrl":null,"url":null,"abstract":"<div><p>The density functional theory is employed for learning the modulation of the electronic structure and magnetic properties of monolayer SnSe<sub>2</sub> by an Mn atom and by co-doping an Mn atom with a halogen atom. It is found that intrinsic SnSe<sub>2</sub> is nonmagnetic, which is consistent with the properties of semiconductors. Following Mn atom doping, the doped system is magnetic and the magnetic moments are primarily responsible for the Mn atom. After co-doping the Mn atom with halogen atoms, the doped system's total magnetic moments are decreased. The examination of the electronic structure demonstrates that the doping of the Mn atom and the co-doping of the Mn atom with halogen atoms lead to the introduction of impurity energy levels into the doped system, which appear only in the spin-up part and do not cross the Fermi energy level. There is asymmetry between the spin-up and spin-down energy bands and the doped system exhibits magnetic semiconductor properties. The hybridization of the p-orbitals of the halogen atoms and the 3d orbitals of the Mn atom is primarily responsible for the introduction of impurity energy levels in the energy bands of the doped system. In the Mn-doped system, ionic bonds were shaped between Mn and Se. In the co-doped system, strong ionic bonds were shaped between the Mn atom and F, Cl atoms, and covalent bonds were shaped between the Mn atom and Br, I atoms.</p></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":"748 ","pages":"Article 122511"},"PeriodicalIF":2.1000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0039602824000621","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The density functional theory is employed for learning the modulation of the electronic structure and magnetic properties of monolayer SnSe2 by an Mn atom and by co-doping an Mn atom with a halogen atom. It is found that intrinsic SnSe2 is nonmagnetic, which is consistent with the properties of semiconductors. Following Mn atom doping, the doped system is magnetic and the magnetic moments are primarily responsible for the Mn atom. After co-doping the Mn atom with halogen atoms, the doped system's total magnetic moments are decreased. The examination of the electronic structure demonstrates that the doping of the Mn atom and the co-doping of the Mn atom with halogen atoms lead to the introduction of impurity energy levels into the doped system, which appear only in the spin-up part and do not cross the Fermi energy level. There is asymmetry between the spin-up and spin-down energy bands and the doped system exhibits magnetic semiconductor properties. The hybridization of the p-orbitals of the halogen atoms and the 3d orbitals of the Mn atom is primarily responsible for the introduction of impurity energy levels in the energy bands of the doped system. In the Mn-doped system, ionic bonds were shaped between Mn and Se. In the co-doped system, strong ionic bonds were shaped between the Mn atom and F, Cl atoms, and covalent bonds were shaped between the Mn atom and Br, I atoms.
期刊介绍:
Surface Science is devoted to elucidating the fundamental aspects of chemistry and physics occurring at a wide range of surfaces and interfaces and to disseminating this knowledge fast. The journal welcomes a broad spectrum of topics, including but not limited to:
• model systems (e.g. in Ultra High Vacuum) under well-controlled reactive conditions
• nanoscale science and engineering, including manipulation of matter at the atomic/molecular scale and assembly phenomena
• reactivity of surfaces as related to various applied areas including heterogeneous catalysis, chemistry at electrified interfaces, and semiconductors functionalization
• phenomena at interfaces relevant to energy storage and conversion, and fuels production and utilization
• surface reactivity for environmental protection and pollution remediation
• interactions at surfaces of soft matter, including polymers and biomaterials.
Both experimental and theoretical work, including modeling, is within the scope of the journal. Work published in Surface Science reaches a wide readership, from chemistry and physics to biology and materials science and engineering, providing an excellent forum for cross-fertilization of ideas and broad dissemination of scientific discoveries.