Required condition for a congruent number: pq with primes p ≡ 1 (mod 8) and q ≡ 3 (mod 8)

Pub Date : 2024-05-21 DOI:10.1016/j.jnt.2024.04.011
Shamik Das
{"title":"Required condition for a congruent number: pq with primes p ≡ 1 (mod 8) and q ≡ 3 (mod 8)","authors":"Shamik Das","doi":"10.1016/j.jnt.2024.04.011","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we establish a crucial requirement for a number of the form <em>n</em>, having two prime factors <em>p</em> and <em>q</em> such that <span><math><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo><mo>≡</mo><mo>(</mo><mn>1</mn><mo>,</mo><mn>3</mn><mo>)</mo><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mn>8</mn><mo>)</mo></math></span>, to qualify as a congruent number. Specifically, we present congruence relations modulo 16 for the 2-part of the class number of the imaginary quadratic field <span><math><mi>Q</mi><mo>(</mo><msqrt><mrow><mo>−</mo><mn>2</mn><mi>p</mi><mi>q</mi></mrow></msqrt><mo>)</mo></math></span> when <em>n</em> is congruent.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022314X24001112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we establish a crucial requirement for a number of the form n, having two prime factors p and q such that (p,q)(1,3)(mod8), to qualify as a congruent number. Specifically, we present congruence relations modulo 16 for the 2-part of the class number of the imaginary quadratic field Q(2pq) when n is congruent.

分享
查看原文
全等数的必要条件:pq 的素数 p≡1 (mod 8) 和 q≡3 (mod 8)
在本文中,我们建立了一个关键的条件,即一个 n 形式的数,有两个质因数 p 和 q,且 (p,q)≡(1,3)(mod8), 才能被称为全等数。具体地说,我们提出了当 n 为全等数时,虚二次域 Q(-2pq) 的类数的 2 部分的 modulo 16 全等关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信