An Li , Wei-Qiang Feng , Ze-Jian Chen , Numan Mailk , Jian-Hua Yin , Chao Zhou
{"title":"Investigation and analysis of the macro- and micro-responses of bentonite-sand mixtures to temperature","authors":"An Li , Wei-Qiang Feng , Ze-Jian Chen , Numan Mailk , Jian-Hua Yin , Chao Zhou","doi":"10.1016/j.gete.2024.100565","DOIUrl":null,"url":null,"abstract":"<div><p>Bentonite-sand mixture has been proposed as a buffer material of high-level radioactive waste (HLW) repositories in many countries. The elevated temperature in HLW repositories significantly influences the properties and behaviour of the surrounding buffers. However, to date the mechanism of temperature effects on the behaviour of the bentonite buffer is not well understood. This study is aimed at clarifying the macro- and micro-responses of bentonite-sand mixtures by conducting cone penetration test, rheometer test, flask volumetric test, scanning electron microscopy (SEM) and mercury intrusion porosimetry (MIP) at different temperatures. The results from macro-experiments show that the liquid limit and yield stress increased while bound water content decreased with increasing temperature. The normalized relationships disclose the sand content dramatically affects the degree of temperature influence on the macro-behaviour. SEM and MIP results present that the contact manner between particles converted from edge-to-face to the edge-to-edge association and some intra-aggregate pores merged to form inter-aggregate pores as temperature increases. The mechanisms of the increasing temperature influence on the responses of bentonite-sand mixtures can be inferred that: 1) the diffuse double layer is supposed to decrease since more ions were electrolyzed from montmorillonite particles, thereby, increasing the ion concentration and changing the ion valence; 2) the slight shrinkage of diffuse double layer produced nano-fissures, causing water-hold capacity to increase; 3) the temperature-induced transition from bound water into free water results in an increase of liquid volume; 4) increasing temperature led to increased inter-particle repulsive force. Furthermore, an empirical model was proposed to predict the yield stress of bentonite dispersion incorporating the combined effects of sand content and temperature.</p></div>","PeriodicalId":56008,"journal":{"name":"Geomechanics for Energy and the Environment","volume":"38 ","pages":"Article 100565"},"PeriodicalIF":3.3000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geomechanics for Energy and the Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352380824000327","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Bentonite-sand mixture has been proposed as a buffer material of high-level radioactive waste (HLW) repositories in many countries. The elevated temperature in HLW repositories significantly influences the properties and behaviour of the surrounding buffers. However, to date the mechanism of temperature effects on the behaviour of the bentonite buffer is not well understood. This study is aimed at clarifying the macro- and micro-responses of bentonite-sand mixtures by conducting cone penetration test, rheometer test, flask volumetric test, scanning electron microscopy (SEM) and mercury intrusion porosimetry (MIP) at different temperatures. The results from macro-experiments show that the liquid limit and yield stress increased while bound water content decreased with increasing temperature. The normalized relationships disclose the sand content dramatically affects the degree of temperature influence on the macro-behaviour. SEM and MIP results present that the contact manner between particles converted from edge-to-face to the edge-to-edge association and some intra-aggregate pores merged to form inter-aggregate pores as temperature increases. The mechanisms of the increasing temperature influence on the responses of bentonite-sand mixtures can be inferred that: 1) the diffuse double layer is supposed to decrease since more ions were electrolyzed from montmorillonite particles, thereby, increasing the ion concentration and changing the ion valence; 2) the slight shrinkage of diffuse double layer produced nano-fissures, causing water-hold capacity to increase; 3) the temperature-induced transition from bound water into free water results in an increase of liquid volume; 4) increasing temperature led to increased inter-particle repulsive force. Furthermore, an empirical model was proposed to predict the yield stress of bentonite dispersion incorporating the combined effects of sand content and temperature.
期刊介绍:
The aim of the Journal is to publish research results of the highest quality and of lasting importance on the subject of geomechanics, with the focus on applications to geological energy production and storage, and the interaction of soils and rocks with the natural and engineered environment. Special attention is given to concepts and developments of new energy geotechnologies that comprise intrinsic mechanisms protecting the environment against a potential engineering induced damage, hence warranting sustainable usage of energy resources.
The scope of the journal is broad, including fundamental concepts in geomechanics and mechanics of porous media, the experiments and analysis of novel phenomena and applications. Of special interest are issues resulting from coupling of particular physics, chemistry and biology of external forcings, as well as of pore fluid/gas and minerals to the solid mechanics of the medium skeleton and pore fluid mechanics. The multi-scale and inter-scale interactions between the phenomena and the behavior representations are also of particular interest. Contributions to general theoretical approach to these issues, but of potential reference to geomechanics in its context of energy and the environment are also most welcome.