Enhancing CO2 capture efficiency: Computational fluid dynamics investigation of gas-liquid vortex reactor configurations for process intensification

IF 13.2 1区 工程技术 Q1 ENGINEERING, CHEMICAL
Siyuan Chen, Xiaojun Lang, Afroditi Kourou, Subhajit Dutta, Kevin M. Van Geem, Yi Ouyang, Geraldine J. Heynderickx
{"title":"Enhancing CO2 capture efficiency: Computational fluid dynamics investigation of gas-liquid vortex reactor configurations for process intensification","authors":"Siyuan Chen,&nbsp;Xiaojun Lang,&nbsp;Afroditi Kourou,&nbsp;Subhajit Dutta,&nbsp;Kevin M. Van Geem,&nbsp;Yi Ouyang,&nbsp;Geraldine J. Heynderickx","doi":"10.1016/j.cej.2024.152535","DOIUrl":null,"url":null,"abstract":"<div><p>This study employs non-thermal Computational Fluid Dynamics (CFD) simulations to explore the efficacy of a gas–liquid vortex reactor (GLVR) for intensifying CO<sub>2</sub> capture. The investigation concentrates on the multiphase flow and mass transfer behavior in diverse GLVR experimental units. Employing a multiphase Euler-Euler CFD model integrated with a Population Balance Model (CFD-PBM), a mass transfer model, and reaction kinetics, allows us to accurately simulate the reactive absorption of CO<sub>2</sub> into aqueous Monoethanolamine (MEA). Experiments are conducted using a 30 wt% MEA solution for CO<sub>2</sub> absorption, serving the purpose of model validation. This comprehensive approach enables a simulation of complex dynamics within the GLVR, emphasizing bubble breakage, coalescence, and reactive mass transfer processes. Examining bubble size distribution, pressure drop, CO<sub>2</sub> absorption efficiency, and energy input systematically across various reactor geometries and operational conditions, our findings demonstrate that an optimized GLVR configuration significantly enhances CO<sub>2</sub> absorption compared to the original design. Furthermore, the optimized GLVR outperforms state-of-the-art process intensification equipment in terms of CO<sub>2</sub> absorption rate per unit reactor volume and energy efficiency.</p></div>","PeriodicalId":270,"journal":{"name":"Chemical Engineering Journal","volume":"493 ","pages":"Article 152535"},"PeriodicalIF":13.2000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1385894724040221","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study employs non-thermal Computational Fluid Dynamics (CFD) simulations to explore the efficacy of a gas–liquid vortex reactor (GLVR) for intensifying CO2 capture. The investigation concentrates on the multiphase flow and mass transfer behavior in diverse GLVR experimental units. Employing a multiphase Euler-Euler CFD model integrated with a Population Balance Model (CFD-PBM), a mass transfer model, and reaction kinetics, allows us to accurately simulate the reactive absorption of CO2 into aqueous Monoethanolamine (MEA). Experiments are conducted using a 30 wt% MEA solution for CO2 absorption, serving the purpose of model validation. This comprehensive approach enables a simulation of complex dynamics within the GLVR, emphasizing bubble breakage, coalescence, and reactive mass transfer processes. Examining bubble size distribution, pressure drop, CO2 absorption efficiency, and energy input systematically across various reactor geometries and operational conditions, our findings demonstrate that an optimized GLVR configuration significantly enhances CO2 absorption compared to the original design. Furthermore, the optimized GLVR outperforms state-of-the-art process intensification equipment in terms of CO2 absorption rate per unit reactor volume and energy efficiency.

Abstract Image

提高二氧化碳捕获效率:用于工艺强化的气液涡流反应器配置的计算流体动力学研究
本研究采用非热计算流体动力学(CFD)模拟来探索气液涡流反应器(GLVR)在强化二氧化碳捕集方面的功效。研究集中于各种 GLVR 实验装置中的多相流和传质行为。我们采用的多相欧拉-欧拉 CFD 模型集成了种群平衡模型 (CFD-PBM)、传质模型和反应动力学,可以准确模拟二氧化碳在水性单乙醇胺 (MEA) 中的反应性吸收。我们使用 30 wt% 的 MEA 溶液进行了二氧化碳吸收实验,目的是验证模型。这种综合方法可以模拟 GLVR 内的复杂动态,强调气泡破裂、凝聚和反应传质过程。通过对各种反应器几何形状和运行条件下的气泡大小分布、压降、二氧化碳吸收效率和能量输入进行系统研究,我们的研究结果表明,与原始设计相比,优化的 GLVR 配置可显著提高二氧化碳吸收效率。此外,就单位反应器容积的二氧化碳吸收率和能效而言,优化的 GLVR 优于最先进的工艺强化设备。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemical Engineering Journal
Chemical Engineering Journal 工程技术-工程:化工
CiteScore
21.70
自引率
9.30%
发文量
6781
审稿时长
2.4 months
期刊介绍: The Chemical Engineering Journal is an international research journal that invites contributions of original and novel fundamental research. It aims to provide an international platform for presenting original fundamental research, interpretative reviews, and discussions on new developments in chemical engineering. The journal welcomes papers that describe novel theory and its practical application, as well as those that demonstrate the transfer of techniques from other disciplines. It also welcomes reports on carefully conducted experimental work that is soundly interpreted. The main focus of the journal is on original and rigorous research results that have broad significance. The Catalysis section within the Chemical Engineering Journal focuses specifically on Experimental and Theoretical studies in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. These studies have industrial impact on various sectors such as chemicals, energy, materials, foods, healthcare, and environmental protection.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信