{"title":"Subtemperate regelation exhibits power-law premelting","authors":"Colin. R. Meyer, Julia Bellamy, Alan. W. Rempel","doi":"10.1098/rspa.2024.0032","DOIUrl":null,"url":null,"abstract":"Wire regelation is a common tabletop demonstration of the pressure-dependence of the ice melting temperature where a loaded wire moves from top to bottom through a block of ice, yet leaves the block intact. With the background temperature fixed at the bulk melting point ∼0°C, the elevated ice and liquid pressures beneath the wire cause melting because of the negative Clapeyron slope, while refreezing takes place above the wire where the pressures are reduced. Regelation is a model for temperate glacier ice moving through small bedrock obstacles. Laboratory experiments demonstrate that regelation continues to occur, albeit at much slower velocities, when the fixed background ice temperature is cold enough that the wire load is insufficient to produce bulk melting, suggesting that premelting plays a central role. Here, we compile available data for wire regelation at all temperatures. We then develop a model for the subtemperate data points, where the film thickness depends on the temperature below the melting point. We find agreement between the power-law model and the laboratory data for slow regelation velocities, allowing us to characterize the dominant premelting mechanisms for different wire compositions. These results advance our understanding of the role of premelting in subtemperate glacier sliding.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"68 2","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rspa.2024.0032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Wire regelation is a common tabletop demonstration of the pressure-dependence of the ice melting temperature where a loaded wire moves from top to bottom through a block of ice, yet leaves the block intact. With the background temperature fixed at the bulk melting point ∼0°C, the elevated ice and liquid pressures beneath the wire cause melting because of the negative Clapeyron slope, while refreezing takes place above the wire where the pressures are reduced. Regelation is a model for temperate glacier ice moving through small bedrock obstacles. Laboratory experiments demonstrate that regelation continues to occur, albeit at much slower velocities, when the fixed background ice temperature is cold enough that the wire load is insufficient to produce bulk melting, suggesting that premelting plays a central role. Here, we compile available data for wire regelation at all temperatures. We then develop a model for the subtemperate data points, where the film thickness depends on the temperature below the melting point. We find agreement between the power-law model and the laboratory data for slow regelation velocities, allowing us to characterize the dominant premelting mechanisms for different wire compositions. These results advance our understanding of the role of premelting in subtemperate glacier sliding.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.