Supporting organizational decisions on How to improve customer repurchase using multi-instance counterfactual explanations

IF 6.7 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
André Artelt , Andreas Gregoriades
{"title":"Supporting organizational decisions on How to improve customer repurchase using multi-instance counterfactual explanations","authors":"André Artelt ,&nbsp;Andreas Gregoriades","doi":"10.1016/j.dss.2024.114249","DOIUrl":null,"url":null,"abstract":"<div><p>Improving customer repurchase intention constitutes a key activity for maintaining sustainable business performance. Returning customers provide many economic and other benefits to businesses. In contrast, attracting new customers is a process that is associated with high costs. This work proposes a novel counterfactual explanations methodology that utilizes textual data from electronic word of mouth to recommend business changes that can improve customers' repurchase behavior. Counterfactual explanation methods gained considerable attention because their logic aligns with human reasoning and the fact that they can recommend low-cost actions on how to turn an unfavorable outcome into a favorable. Most counterfactual explanation methods however recommend actions that can change the outcome of individual instances (i.e. one customer) rather than a group of instances. Therefore, this work proposes a multi-instance counterfactual explanation method that recommends optimum changes to an organization's practices/policies that increase repurchase intention for many customers or customer segments.</p><p>The proposed methodology utilizes topic modeling to extract customer opinions from online reviews' text and use topics as features to train a binary classifier that predicts customer revisit intention. Multi-instance counterfactual explanations are computed for all or different groups of non-revisiting customers, recommending optimum business changes that can increase revisit intention. The proposed methodology is empirically evaluated through a case study on the restaurant revisit problem and compared against a prominent alternative from the literature. The results show that the method has better performance to the alternative method and produces recommendations that are actionable and abide by the customer-repurchase literature.</p></div>","PeriodicalId":55181,"journal":{"name":"Decision Support Systems","volume":"182 ","pages":"Article 114249"},"PeriodicalIF":6.7000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Decision Support Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167923624000824","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Improving customer repurchase intention constitutes a key activity for maintaining sustainable business performance. Returning customers provide many economic and other benefits to businesses. In contrast, attracting new customers is a process that is associated with high costs. This work proposes a novel counterfactual explanations methodology that utilizes textual data from electronic word of mouth to recommend business changes that can improve customers' repurchase behavior. Counterfactual explanation methods gained considerable attention because their logic aligns with human reasoning and the fact that they can recommend low-cost actions on how to turn an unfavorable outcome into a favorable. Most counterfactual explanation methods however recommend actions that can change the outcome of individual instances (i.e. one customer) rather than a group of instances. Therefore, this work proposes a multi-instance counterfactual explanation method that recommends optimum changes to an organization's practices/policies that increase repurchase intention for many customers or customer segments.

The proposed methodology utilizes topic modeling to extract customer opinions from online reviews' text and use topics as features to train a binary classifier that predicts customer revisit intention. Multi-instance counterfactual explanations are computed for all or different groups of non-revisiting customers, recommending optimum business changes that can increase revisit intention. The proposed methodology is empirically evaluated through a case study on the restaurant revisit problem and compared against a prominent alternative from the literature. The results show that the method has better performance to the alternative method and produces recommendations that are actionable and abide by the customer-repurchase literature.

利用多实例反事实解释为组织决策提供支持:如何提高客户回购率
提高客户的回购意向是保持可持续经营业绩的一项关键活动。回头客能为企业带来许多经济和其他方面的利益。与此相反,吸引新客户则是一个需要付出高昂成本的过程。本研究提出了一种新颖的反事实解释方法,利用电子口碑中的文本数据来建议企业做出改变,从而改善客户的再次购买行为。反事实解释方法之所以备受关注,是因为其逻辑与人类推理相吻合,而且可以建议采取低成本行动,将不利结果转化为有利结果。然而,大多数反事实解释方法推荐的行动只能改变单个实例(即一个客户)的结果,而不能改变一组实例的结果。因此,这项工作提出了一种多实例反事实解释方法,该方法建议对组织的实践/政策进行最佳修改,以提高许多客户或客户群的重购意向。建议的方法利用主题建模从在线评论文本中提取客户意见,并使用主题作为特征来训练二元分类器,从而预测客户的重访意向。针对所有或不同的非重访客户群体计算多实例反事实解释,推荐可提高重访意向的最佳业务变更。通过对餐厅再次光顾问题的案例研究,对所提出的方法进行了实证评估,并与文献中的一个重要替代方法进行了比较。结果表明,该方法的性能优于其他方法,所提出的建议具有可操作性,并符合顾客购买文献的要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Decision Support Systems
Decision Support Systems 工程技术-计算机:人工智能
CiteScore
14.70
自引率
6.70%
发文量
119
审稿时长
13 months
期刊介绍: The common thread of articles published in Decision Support Systems is their relevance to theoretical and technical issues in the support of enhanced decision making. The areas addressed may include foundations, functionality, interfaces, implementation, impacts, and evaluation of decision support systems (DSSs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信