Li-xiao Ni , Yuan-yi Fang , Cun-hao Du , Jia-jia Wang , Cheng-jie Zhu , Chu Xu , Shi-yin Li , Jian Xu , Xu-qing Chen , Hua Su
{"title":"Microbial community diversity during algal inhibition using slow-release microcapsules of tea polyphenols","authors":"Li-xiao Ni , Yuan-yi Fang , Cun-hao Du , Jia-jia Wang , Cheng-jie Zhu , Chu Xu , Shi-yin Li , Jian Xu , Xu-qing Chen , Hua Su","doi":"10.1016/j.wse.2024.05.004","DOIUrl":null,"url":null,"abstract":"<div><p>Harmful algal blooms (HABs) resulting from eutrophication pose a major threat to ecosystems and human health, necessitating effective control measures. Allelochemicals have shown their importance in slowing down algal proliferation due to their proven efficacy and low ecological impacts. In this study, allelopathy tea polyphenols (TPs) and β-cyclodextrin were combined to prepare slow-release algicidal microcapsules, and the diversity of microbial community in the algal inhibition process was analyzed. Results showed that TP slow-release microcapsules had strong algicidal activity. When against <em>Microcystis aeruginosa</em> within 20 d, their constant inhibitory rate was up to 99% compared to the control group. Microbial diversity decreased with an increase in algae density, and the species richness and diversity of algae increased under the stress of TP slow-release microcapsules. The redundancy analysis showed that the environmental factors with impacts on the abundance and diversity of bacterial communities in descending order were dissolved oxygen, pH, and temperature. This study provides a theoretical basis for the application of TP slow-release microcapsules to actual water.</p></div>","PeriodicalId":23628,"journal":{"name":"Water science and engineering","volume":"17 3","pages":"Pages 266-273"},"PeriodicalIF":3.7000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1674237024000528/pdfft?md5=10c451ad88403e633f575865288f70e8&pid=1-s2.0-S1674237024000528-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water science and engineering","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674237024000528","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0
Abstract
Harmful algal blooms (HABs) resulting from eutrophication pose a major threat to ecosystems and human health, necessitating effective control measures. Allelochemicals have shown their importance in slowing down algal proliferation due to their proven efficacy and low ecological impacts. In this study, allelopathy tea polyphenols (TPs) and β-cyclodextrin were combined to prepare slow-release algicidal microcapsules, and the diversity of microbial community in the algal inhibition process was analyzed. Results showed that TP slow-release microcapsules had strong algicidal activity. When against Microcystis aeruginosa within 20 d, their constant inhibitory rate was up to 99% compared to the control group. Microbial diversity decreased with an increase in algae density, and the species richness and diversity of algae increased under the stress of TP slow-release microcapsules. The redundancy analysis showed that the environmental factors with impacts on the abundance and diversity of bacterial communities in descending order were dissolved oxygen, pH, and temperature. This study provides a theoretical basis for the application of TP slow-release microcapsules to actual water.
期刊介绍:
Water Science and Engineering journal is an international, peer-reviewed research publication covering new concepts, theories, methods, and techniques related to water issues. The journal aims to publish research that helps advance the theoretical and practical understanding of water resources, aquatic environment, aquatic ecology, and water engineering, with emphases placed on the innovation and applicability of science and technology in large-scale hydropower project construction, large river and lake regulation, inter-basin water transfer, hydroelectric energy development, ecological restoration, the development of new materials, and sustainable utilization of water resources.