{"title":"Processes at Platinum Electrodes during the Cathode Polarization in Alcohol Erbium Nitrate Solution","authors":"S. A. Volchek, V. A. Yakovtseva","doi":"10.1134/S1023193524050070","DOIUrl":null,"url":null,"abstract":"<p>The processes at platinum electrodes during the cathode polarization in an alcohol solution of erbium nitrate are discussed. The current density maxima on the cathode branch of voltammograms were found to correspond to the potentials of the hydrogen reduction reactions. The gel-like deposit Er(OH)<sub><i>x</i></sub>(NO<sub>3</sub>)<sub><i>y</i></sub>(С<sub>2</sub>Н<sub>5</sub>О)<sub><i>z</i></sub>·<i>n</i>H<sub>2</sub>O, <i>x + y + z</i> = 3, formed during the cathode treatment was shown to be not a product of the electron exchange between the cathode and the solution components. The following formation mechanism of the erbium-containing deposit has been suggested. First, the electrochemical process of the hydrogen cathode reduction is implemented. This process leads to the ionic unbalance and causes the alkalinization of the cathode space. This creates conditions for the chemical process of the gel-like erbium hydroxide formation, which is physically adsorbed on the cathode surface as a precipitate.</p>","PeriodicalId":760,"journal":{"name":"Russian Journal of Electrochemistry","volume":"60 5","pages":"348 - 354"},"PeriodicalIF":1.1000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Electrochemistry","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S1023193524050070","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
Abstract
The processes at platinum electrodes during the cathode polarization in an alcohol solution of erbium nitrate are discussed. The current density maxima on the cathode branch of voltammograms were found to correspond to the potentials of the hydrogen reduction reactions. The gel-like deposit Er(OH)x(NO3)y(С2Н5О)z·nH2O, x + y + z = 3, formed during the cathode treatment was shown to be not a product of the electron exchange between the cathode and the solution components. The following formation mechanism of the erbium-containing deposit has been suggested. First, the electrochemical process of the hydrogen cathode reduction is implemented. This process leads to the ionic unbalance and causes the alkalinization of the cathode space. This creates conditions for the chemical process of the gel-like erbium hydroxide formation, which is physically adsorbed on the cathode surface as a precipitate.
本文讨论了硝酸铒酒精溶液中阴极极化过程中铂电极的变化过程。发现伏安图阴极分支上的电流密度最大值与氢还原反应的电位相对应。阴极处理过程中形成的凝胶状沉积物 Er(OH)x(NO3)y(С2Н5О)z-nH2O, x + y + z = 3,被证明不是阴极和溶液成分之间电子交换的产物。含铒沉积物的形成机制如下。首先,实施氢阴极还原的电化学过程。这一过程会导致离子不平衡,使阴极空间碱化。这为形成凝胶状氢氧化铒的化学过程创造了条件,氢氧化铒以沉淀的形式物理吸附在阴极表面。
期刊介绍:
Russian Journal of Electrochemistry is a journal that covers all aspects of research in modern electrochemistry. The journal welcomes submissions in English or Russian regardless of country and nationality of authors.