Xiao Han , Ruoyu Xu , Yan Li , Yang Ding , Manchen Zhang , Bo Wang , Xiaoxing Ke , Manling Sui , Pengfei Yan
{"title":"Early-stage latent thermal failure of single-crystal Ni-rich layered cathode","authors":"Xiao Han , Ruoyu Xu , Yan Li , Yang Ding , Manchen Zhang , Bo Wang , Xiaoxing Ke , Manling Sui , Pengfei Yan","doi":"10.1016/j.jechem.2024.05.020","DOIUrl":null,"url":null,"abstract":"<div><p>High nickel content worsens the thermal stability of layered cathodes for lithium-ion batteries, raising safety concerns for their applications. Thoroughly understanding the thermal failure process can offer valuable guidance for material optimization on thermal stability and new opportunities in monitoring battery thermal runaway (TR). Herein, this work comprehensively investigates the thermal failure process of a single-crystal nickel-rich layered cathode and finds that the latent thermal failure starts at ∼120 °C far below the TR temperature (225 °C). During this stage of heat accumulation, sequential structure transition is revealed by atomic resolution electron microscopy, which follows the layered → cation mixing layered → LiMn<sub>2</sub>O<sub>4</sub>-type spinel → disordered spinel → rock salt. This progression occurs as a result of the continuous migration and densification of transition metal cations. Phase transition generates gaseous oxygen, initially confined within the isolated closed pores, thereby not showing any thermal failure phenomena at the macro-level. Increasing temperature leads to pore growth and coalescence, and eventually to the formation of open pores, causing oxygen gas release and weight loss, which are the typical TR features. We highlight that latent thermal instability occurs before the macro-level TR, suggesting that suppressing phase transitions caused by early thermal instability is a crucial direction for material optimization. Our findings can also be used for early warning of battery thermal runaway.</p></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":"96 ","pages":"Pages 578-587"},"PeriodicalIF":13.1000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Energy Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095495624003656","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0
Abstract
High nickel content worsens the thermal stability of layered cathodes for lithium-ion batteries, raising safety concerns for their applications. Thoroughly understanding the thermal failure process can offer valuable guidance for material optimization on thermal stability and new opportunities in monitoring battery thermal runaway (TR). Herein, this work comprehensively investigates the thermal failure process of a single-crystal nickel-rich layered cathode and finds that the latent thermal failure starts at ∼120 °C far below the TR temperature (225 °C). During this stage of heat accumulation, sequential structure transition is revealed by atomic resolution electron microscopy, which follows the layered → cation mixing layered → LiMn2O4-type spinel → disordered spinel → rock salt. This progression occurs as a result of the continuous migration and densification of transition metal cations. Phase transition generates gaseous oxygen, initially confined within the isolated closed pores, thereby not showing any thermal failure phenomena at the macro-level. Increasing temperature leads to pore growth and coalescence, and eventually to the formation of open pores, causing oxygen gas release and weight loss, which are the typical TR features. We highlight that latent thermal instability occurs before the macro-level TR, suggesting that suppressing phase transitions caused by early thermal instability is a crucial direction for material optimization. Our findings can also be used for early warning of battery thermal runaway.
期刊介绍:
The Journal of Energy Chemistry, the official publication of Science Press and the Dalian Institute of Chemical Physics, Chinese Academy of Sciences, serves as a platform for reporting creative research and innovative applications in energy chemistry. It mainly reports on creative researches and innovative applications of chemical conversions of fossil energy, carbon dioxide, electrochemical energy and hydrogen energy, as well as the conversions of biomass and solar energy related with chemical issues to promote academic exchanges in the field of energy chemistry and to accelerate the exploration, research and development of energy science and technologies.
This journal focuses on original research papers covering various topics within energy chemistry worldwide, including:
Optimized utilization of fossil energy
Hydrogen energy
Conversion and storage of electrochemical energy
Capture, storage, and chemical conversion of carbon dioxide
Materials and nanotechnologies for energy conversion and storage
Chemistry in biomass conversion
Chemistry in the utilization of solar energy