The stable Picard group of finite Adams Hopf algebroids with an application to the R-motivic Steenrod subalgebra AR(1)

Pub Date : 2024-05-22 DOI:10.1016/j.jpaa.2024.107732
Xu Gao , Ang Li
{"title":"The stable Picard group of finite Adams Hopf algebroids with an application to the R-motivic Steenrod subalgebra AR(1)","authors":"Xu Gao ,&nbsp;Ang Li","doi":"10.1016/j.jpaa.2024.107732","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we investigate the rigidity of the stable comodule category of a specific class of Hopf algebroids known as <em>finite Adams</em>, shedding light on its Picard group. Then, we establish a reduction process through base changes, enabling us to effectively compute the Picard group of the <figure><img></figure><em>-motivic mod</em> 2 <em>Steenrod subalgebra</em> <figure><img></figure>. Our computation shows that <figure><img></figure> is isomorphic to <figure><img></figure>, where two ranks come from the motivic grading, one from the algebraic loop functor, and the last is generated by the <figure><img></figure><em>-motivic joker J</em>.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022404924001294","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we investigate the rigidity of the stable comodule category of a specific class of Hopf algebroids known as finite Adams, shedding light on its Picard group. Then, we establish a reduction process through base changes, enabling us to effectively compute the Picard group of the

-motivic mod 2 Steenrod subalgebra
. Our computation shows that
is isomorphic to
, where two ranks come from the motivic grading, one from the algebraic loop functor, and the last is generated by the
-motivic joker J.

分享
查看原文
有限亚当斯霍普夫自治体的稳定皮卡德群及其在 R-motivic Steenrod 子代数中的应用
在本文中,我们研究了一类被称为有限亚当斯的特定霍普夫等价体的稳定逗点范畴的刚性,揭示了它的皮卡群。然后,我们建立了一个通过基变化的还原过程,使我们能够有效地计算-motivic mod 2 Steenrod 子代数的皮卡群。我们的计算表明,它与 ,同构,其中两个等级来自动机分级,一个来自代数环函子,最后一个由 -动机小丑 J 生成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信