{"title":"Therapeutic Targeting of PKM2 Ameliorates NASH Fibrosis Progression in a Macrophage-Specific and Liver-Specific Manner","authors":"","doi":"10.1016/j.eng.2024.05.005","DOIUrl":null,"url":null,"abstract":"<div><div>Nonalcoholic steatohepatitis (NASH) may soon become the leading cause of end-stage liver disease worldwide with limited treatment options. Liver fibrosis, which is driven by chronic inflammation and hepatic stellate cell (HSC) activation, critically determines morbidity and mortality in patients with NASH. Pyruvate kinase M2 (PKM2) is involved in immune activation and inflammatory liver diseases; however, its role and therapeutic potential in NASH-related fibrosis remain largely unexplored. Bioinformatics screening and analysis of human and murine NASH livers indicated that PKM2 was upregulated in nonparenchymal cells (NPCs), especially macrophages, in the livers of patients with fibrotic NASH. Macrophage-specific PKM2 knockout (<em>PKM2<sup>FL/FL</sup>LysM-Cre</em>) significantly ameliorated hepatic inflammation and fibrosis severity in three distinct NASH models induced by a methionine- and choline-deficient (MCD) diet, a high-fat high-cholesterol (HFHC) diet, and a western diet plus weekly carbon tetrachloride injection (WD/CCl<sub>4</sub>). Single-cell transcriptomic analysis indicated that deletion of PKM2 in macrophages reduced profibrotic Ly6C<sup>high</sup> macrophage infiltration. Mechanistically, PKM2-dependent glycolysis promoted NLR family pyrin domain containing 3 (NLRP3) activation in proinflammatory macrophages, which induced HSC activation and fibrogenesis. A pharmacological PKM2 agonist efficiently attenuated the profibrotic crosstalk between macrophages and HSCs <em>in vitro</em> and <em>in vivo</em>. Translationally, ablation of PKM2 in NPCs by cholesterol-conjugated heteroduplex oligonucleotides, a novel oligonucleotide drug that preferentially accumulates in the liver, dose-dependently reversed NASH-related fibrosis without causing observable hepatotoxicity. The present study highlights the pivotal role of macrophage PKM2 in advancing NASH fibrogenesis. Thus, therapeutic modulation of PKM2 in a macrophage-specific or liver-specific manner may serve as a novel strategy to combat NASH-related fibrosis.</div></div>","PeriodicalId":11783,"journal":{"name":"Engineering","volume":null,"pages":null},"PeriodicalIF":10.1000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095809924002650","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Nonalcoholic steatohepatitis (NASH) may soon become the leading cause of end-stage liver disease worldwide with limited treatment options. Liver fibrosis, which is driven by chronic inflammation and hepatic stellate cell (HSC) activation, critically determines morbidity and mortality in patients with NASH. Pyruvate kinase M2 (PKM2) is involved in immune activation and inflammatory liver diseases; however, its role and therapeutic potential in NASH-related fibrosis remain largely unexplored. Bioinformatics screening and analysis of human and murine NASH livers indicated that PKM2 was upregulated in nonparenchymal cells (NPCs), especially macrophages, in the livers of patients with fibrotic NASH. Macrophage-specific PKM2 knockout (PKM2FL/FLLysM-Cre) significantly ameliorated hepatic inflammation and fibrosis severity in three distinct NASH models induced by a methionine- and choline-deficient (MCD) diet, a high-fat high-cholesterol (HFHC) diet, and a western diet plus weekly carbon tetrachloride injection (WD/CCl4). Single-cell transcriptomic analysis indicated that deletion of PKM2 in macrophages reduced profibrotic Ly6Chigh macrophage infiltration. Mechanistically, PKM2-dependent glycolysis promoted NLR family pyrin domain containing 3 (NLRP3) activation in proinflammatory macrophages, which induced HSC activation and fibrogenesis. A pharmacological PKM2 agonist efficiently attenuated the profibrotic crosstalk between macrophages and HSCs in vitro and in vivo. Translationally, ablation of PKM2 in NPCs by cholesterol-conjugated heteroduplex oligonucleotides, a novel oligonucleotide drug that preferentially accumulates in the liver, dose-dependently reversed NASH-related fibrosis without causing observable hepatotoxicity. The present study highlights the pivotal role of macrophage PKM2 in advancing NASH fibrogenesis. Thus, therapeutic modulation of PKM2 in a macrophage-specific or liver-specific manner may serve as a novel strategy to combat NASH-related fibrosis.
期刊介绍:
Engineering, an international open-access journal initiated by the Chinese Academy of Engineering (CAE) in 2015, serves as a distinguished platform for disseminating cutting-edge advancements in engineering R&D, sharing major research outputs, and highlighting key achievements worldwide. The journal's objectives encompass reporting progress in engineering science, fostering discussions on hot topics, addressing areas of interest, challenges, and prospects in engineering development, while considering human and environmental well-being and ethics in engineering. It aims to inspire breakthroughs and innovations with profound economic and social significance, propelling them to advanced international standards and transforming them into a new productive force. Ultimately, this endeavor seeks to bring about positive changes globally, benefit humanity, and shape a new future.