On the invariants of L-functions of degree 2, I: Twisted degree and internal shift

IF 0.5 3区 数学 Q3 MATHEMATICS
J. Kaczorowski, A. Perelli
{"title":"On the invariants of L-functions of degree 2, I: Twisted degree and internal shift","authors":"J. Kaczorowski, A. Perelli","doi":"10.1142/s1793042124501215","DOIUrl":null,"url":null,"abstract":"This is the first part of a series of papers where the behaviour of the invariants under twist by Dirichlet characters is studied for $L$-functions of degree 2. Here we show, under suitable conditions, that degree and internal shift remain unchanged under twist. The ultimate goal of the series is to prove a general version of Weil converse theorem with minimal assumptions on the shape of the functional equation of the twists.","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Number Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s1793042124501215","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This is the first part of a series of papers where the behaviour of the invariants under twist by Dirichlet characters is studied for $L$-functions of degree 2. Here we show, under suitable conditions, that degree and internal shift remain unchanged under twist. The ultimate goal of the series is to prove a general version of Weil converse theorem with minimal assumptions on the shape of the functional equation of the twists.
论 2 阶 L 函数的不变式,I:扭曲度与内移
本文是系列论文的第一部分,研究了阶数为 2 的 $L$ 函数在迪里夏特特征扭转下的不变式行为。在此,我们证明,在适当条件下,阶数和内移在扭转下保持不变。这一系列论文的最终目标是证明魏尔反向定理的一般版本,只需对扭转函数方程的形状作最少的假设。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.10
自引率
14.30%
发文量
97
审稿时长
4-8 weeks
期刊介绍: This journal publishes original research papers and review articles on all areas of Number Theory, including elementary number theory, analytic number theory, algebraic number theory, arithmetic algebraic geometry, geometry of numbers, diophantine equations, diophantine approximation, transcendental number theory, probabilistic number theory, modular forms, multiplicative number theory, additive number theory, partitions, and computational number theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信