A Design Method of an Ultra-Wideband and Easy-to-Array Magic-T: A 6-14 GHz Scaled Model for a mm/submm Camera

IF 1.1 3区 物理与天体物理 Q4 PHYSICS, APPLIED
Shuhei Inoue, Kah Wuy Chin, Shinsuke Uno, Kotaro Kohno, Yuka Niwa, Toyo Naganuma, Ryosuke Yamamura, Kazuki Watanabe, Tatsuya Takekoshi, Tai Oshima
{"title":"A Design Method of an Ultra-Wideband and Easy-to-Array Magic-T: A 6-14 GHz Scaled Model for a mm/submm Camera","authors":"Shuhei Inoue,&nbsp;Kah Wuy Chin,&nbsp;Shinsuke Uno,&nbsp;Kotaro Kohno,&nbsp;Yuka Niwa,&nbsp;Toyo Naganuma,&nbsp;Ryosuke Yamamura,&nbsp;Kazuki Watanabe,&nbsp;Tatsuya Takekoshi,&nbsp;Tai Oshima","doi":"10.1007/s10909-024-03150-w","DOIUrl":null,"url":null,"abstract":"<div><p>We established a design method for a Magic-T with a single-layer dielectric/metal structure suitable for both wideband and multi-element applications for millimeter and submillimeter wave imaging observations. The design method was applied to a Magic-T with a coupled-line, stubs, and single-stage impedance transformers in a frequency-scaled model (6–14 GHz) that is relatively easy to demonstrate through manufacturing and evaluation. The major problem is that using the conventional perfect matching condition for a coupled-line alone produces an impractically large width coplanar coupled-line (CPCL) to satisfy the desired bandwidth ratio. In our study, by removing this constraint and optimizing impedances utilizing a circuit simulator with high computation speed, we found a solution with a <span>\\(\\sim\\)</span> 180 μm wide CPCL, which is approximately an order of magnitude smaller than the conventional analytical solution. Furthermore, considering the effect of transition discontinuities in the transmission lines, we optimized the line length and obtained a design solution with return loss &lt; − 20 dB, amplitude imbalance &lt; 0.1 dB, and phase imbalance &lt; 0.5<span>\\(^{\\circ }\\)</span> from 6.1 to 14.1 GHz.</p></div>","PeriodicalId":641,"journal":{"name":"Journal of Low Temperature Physics","volume":"216 Part 3","pages":"378 - 385"},"PeriodicalIF":1.1000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10909-024-03150-w.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Low Temperature Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10909-024-03150-w","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We established a design method for a Magic-T with a single-layer dielectric/metal structure suitable for both wideband and multi-element applications for millimeter and submillimeter wave imaging observations. The design method was applied to a Magic-T with a coupled-line, stubs, and single-stage impedance transformers in a frequency-scaled model (6–14 GHz) that is relatively easy to demonstrate through manufacturing and evaluation. The major problem is that using the conventional perfect matching condition for a coupled-line alone produces an impractically large width coplanar coupled-line (CPCL) to satisfy the desired bandwidth ratio. In our study, by removing this constraint and optimizing impedances utilizing a circuit simulator with high computation speed, we found a solution with a \(\sim\) 180 μm wide CPCL, which is approximately an order of magnitude smaller than the conventional analytical solution. Furthermore, considering the effect of transition discontinuities in the transmission lines, we optimized the line length and obtained a design solution with return loss < − 20 dB, amplitude imbalance < 0.1 dB, and phase imbalance < 0.5\(^{\circ }\) from 6.1 to 14.1 GHz.

Abstract Image

超宽带、易阵列 Magic-T 的设计方法:用于毫米/亚毫米相机的 6-14 GHz 比例模型
我们为具有单层介质/金属结构的 Magic-T 建立了一种设计方法,这种结构既适用于毫米波和亚毫米波成像观测的宽带应用,也适用于多元素应用。我们将该设计方法应用于带有耦合线、存根和单级阻抗变压器的 Magic-T 频率比例模型(6-14 GHz),该模型相对容易通过制造和评估进行演示。主要问题在于,如果仅使用耦合线的传统完美匹配条件,就会产生不切实际的大宽度共面耦合线 (CPCL),以满足所需的带宽比。在我们的研究中,通过消除这一约束条件,并利用计算速度较快的电路模拟器优化阻抗,我们找到了一个 180 μm 宽 CPCL 的解决方案,这比传统的分析解决方案小了大约一个数量级。此外,考虑到传输线中过渡不连续性的影响,我们优化了传输线的长度,得到了回波损耗为- 20 dB、振幅不平衡为 0.1 dB、相位不平衡为 0.5(^\{circ }\)的设计方案,频率范围从 6.1 GHz 到 14.1 GHz。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Low Temperature Physics
Journal of Low Temperature Physics 物理-物理:凝聚态物理
CiteScore
3.30
自引率
25.00%
发文量
245
审稿时长
1 months
期刊介绍: The Journal of Low Temperature Physics publishes original papers and review articles on all areas of low temperature physics and cryogenics, including theoretical and experimental contributions. Subject areas include: Quantum solids, liquids and gases; Superfluidity; Superconductivity; Condensed matter physics; Experimental techniques; The Journal encourages the submission of Rapid Communications and Special Issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信