Lithium spreading layer consisting of nickel particles enables stable cycling of aluminum anode in all-solid-state battery

Jingjing Chai, Libo Song, Zhendong Li, Zhe Peng, Xiayin Yao
{"title":"Lithium spreading layer consisting of nickel particles enables stable cycling of aluminum anode in all-solid-state battery","authors":"Jingjing Chai,&nbsp;Libo Song,&nbsp;Zhendong Li,&nbsp;Zhe Peng,&nbsp;Xiayin Yao","doi":"10.1002/bte2.20240004","DOIUrl":null,"url":null,"abstract":"<p>Developing promising substitutes of lithium (Li) metal anode that suffers from a serious interfacial instability against the solid electrolyte (SE) is a formidable challenge for the all-solid-state battery. Aluminum (Al), a highly potential candidate owing to its high specific capacity and relatively low working potential, however, cannot withstand stable cycling in all-solid-state battery due to the fast structural collapse caused by the solid/solid contact at the Al/SE interface. Herein, a Li spreading layer consisting of metallic nickel (Ni) particles at the Al surface is proposed to raise the performance of Al anode in all-solid-state battery. Owing to the immiscibility between Ni and Li solid phases, this Li spreading layer can enable a uniform distribution of Li atoms over the electrode surface followed by a stable Li–Al alloying/dealloying processes, suppressing the stress deformation at the Al/SE interface and significantly improving the cycling performance of Al anode in all-solid-state battery. The modified Al anode not only outperforms the bare Al significantly, but also exhibits superior cyclability and rate ability compared with the Li anode. This work provides an efficient strategy to promote the application of Al anode in all-solid-state battery, and is expected to be generalized for other alloy anodes.</p>","PeriodicalId":8807,"journal":{"name":"Battery Energy","volume":"3 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bte2.20240004","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Battery Energy","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bte2.20240004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Developing promising substitutes of lithium (Li) metal anode that suffers from a serious interfacial instability against the solid electrolyte (SE) is a formidable challenge for the all-solid-state battery. Aluminum (Al), a highly potential candidate owing to its high specific capacity and relatively low working potential, however, cannot withstand stable cycling in all-solid-state battery due to the fast structural collapse caused by the solid/solid contact at the Al/SE interface. Herein, a Li spreading layer consisting of metallic nickel (Ni) particles at the Al surface is proposed to raise the performance of Al anode in all-solid-state battery. Owing to the immiscibility between Ni and Li solid phases, this Li spreading layer can enable a uniform distribution of Li atoms over the electrode surface followed by a stable Li–Al alloying/dealloying processes, suppressing the stress deformation at the Al/SE interface and significantly improving the cycling performance of Al anode in all-solid-state battery. The modified Al anode not only outperforms the bare Al significantly, but also exhibits superior cyclability and rate ability compared with the Li anode. This work provides an efficient strategy to promote the application of Al anode in all-solid-state battery, and is expected to be generalized for other alloy anodes.

Abstract Image

由镍颗粒组成的锂扩散层使铝阳极在全固态电池中稳定循环
锂(Li)金属负极与固体电解质(SE)之间存在严重的界面不稳定性,因此开发有前途的锂金属负极替代品是全固态电池面临的一项艰巨挑战。铝(Al)因其高比容量和相对较低的工作电位而成为极具潜力的候选材料,然而,由于铝/固态电解质界面的固/固接触导致的快速结构坍塌,铝无法承受全固态电池的稳定循环。本文提出在铝表面形成由金属镍(Ni)颗粒组成的锂扩散层,以提高铝阳极在全固态电池中的性能。由于镍和锂固相之间的不相溶性,这种锂扩散层能使锂原子均匀地分布在电极表面,然后形成稳定的锂-铝合金/合金化过程,从而抑制铝/SE界面的应力变形,显著提高铝阳极在全固态电池中的循环性能。与锂阳极相比,改性后的铝阳极不仅在性能上明显优于裸铝,而且在循环性和速率能力上也更胜一筹。这项工作为促进铝阳极在全固态电池中的应用提供了一种有效的策略,并有望推广到其他合金阳极中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信