Yan Jia, Lei Zhai, Song Mo, Yi Liu, Li-Xin Liu, Xin-Yu Du, Min-Hui He, Lin Fan
{"title":"Effect of Low-temperature Imidization on Properties and Aggregation Structures of Polyimide Films with Different Rigidity","authors":"Yan Jia, Lei Zhai, Song Mo, Yi Liu, Li-Xin Liu, Xin-Yu Du, Min-Hui He, Lin Fan","doi":"10.1007/s10118-024-3137-1","DOIUrl":null,"url":null,"abstract":"<div><p>The traditional high-temperature preparation process of polyimide can cause many problems and limits the wider application in extreme conditions. An important challenge to be solved urgently is the reduction of imidization temperature. In this work, twelve kinds of polyimide films with different chain rigidity were prepared at low temperature of 200 °C, in the absence or presence of imidazole used as the catalyst. The molecular rigidity and free volume were theoretically calculated, and relationship between structure and properties were systematically studied. The results show that imidization reaction under low temperatures is significantly affected by the rigidity of molecular chains. The rigid structure of polyimide is not conducive to the low-temperature imidization, but this adverse effect can be eliminated by adding catalyst, resulting the notably increased imidization degree. The optical and thermal properties can be improved to a certain extent for the chemically catalyzed system, resulting in relatively higher heat resistance and thermal stability. While the mechanical performance could be determined by complicating factors, greatly different from polyimide films prepared by high temperature method. To investigate aggregation structures of films, the effect of chain rigidity and catalyst on the stacking or orientation of molecular chains was further elaborated. This work can contribute to the understanding of chemically catalyzed imidization that is rarely reported in the existing research, and will provide guidance for the low-temperature preparation of high-performance polyimides.</p></div>","PeriodicalId":517,"journal":{"name":"Chinese Journal of Polymer Science","volume":"42 8","pages":"1134 - 1146"},"PeriodicalIF":4.1000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10118-024-3137-1","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The traditional high-temperature preparation process of polyimide can cause many problems and limits the wider application in extreme conditions. An important challenge to be solved urgently is the reduction of imidization temperature. In this work, twelve kinds of polyimide films with different chain rigidity were prepared at low temperature of 200 °C, in the absence or presence of imidazole used as the catalyst. The molecular rigidity and free volume were theoretically calculated, and relationship between structure and properties were systematically studied. The results show that imidization reaction under low temperatures is significantly affected by the rigidity of molecular chains. The rigid structure of polyimide is not conducive to the low-temperature imidization, but this adverse effect can be eliminated by adding catalyst, resulting the notably increased imidization degree. The optical and thermal properties can be improved to a certain extent for the chemically catalyzed system, resulting in relatively higher heat resistance and thermal stability. While the mechanical performance could be determined by complicating factors, greatly different from polyimide films prepared by high temperature method. To investigate aggregation structures of films, the effect of chain rigidity and catalyst on the stacking or orientation of molecular chains was further elaborated. This work can contribute to the understanding of chemically catalyzed imidization that is rarely reported in the existing research, and will provide guidance for the low-temperature preparation of high-performance polyimides.
期刊介绍:
Chinese Journal of Polymer Science (CJPS) is a monthly journal published in English and sponsored by the Chinese Chemical Society and the Institute of Chemistry, Chinese Academy of Sciences. CJPS is edited by a distinguished Editorial Board headed by Professor Qi-Feng Zhou and supported by an International Advisory Board in which many famous active polymer scientists all over the world are included. The journal was first published in 1983 under the title Polymer Communications and has the current name since 1985.
CJPS is a peer-reviewed journal dedicated to the timely publication of original research ideas and results in the field of polymer science. The issues may carry regular papers, rapid communications and notes as well as feature articles. As a leading polymer journal in China published in English, CJPS reflects the new achievements obtained in various laboratories of China, CJPS also includes papers submitted by scientists of different countries and regions outside of China, reflecting the international nature of the journal.