Synchronization of Fractional Delayed Memristive Neural Networks with Jump Mismatches via Event-Based Hybrid Impulsive Controller

Huiyu Wang, Shutang Liu, Xiang Wu, Jie Sun, W. Qiao
{"title":"Synchronization of Fractional Delayed Memristive Neural Networks with Jump Mismatches via Event-Based Hybrid Impulsive Controller","authors":"Huiyu Wang, Shutang Liu, Xiang Wu, Jie Sun, W. Qiao","doi":"10.3390/fractalfract8050297","DOIUrl":null,"url":null,"abstract":"This study investigates the asymptotic synchronization in fractional memristive neural networks of the Riemann–Liouville type, considering mixed time delays and jump mismatches. Addressing the challenges associated with discrepancies in the circuit switching speed and the accuracy of the memristor, this paper introduces an enhanced model that effectively navigates these complexities. We propose two novel event-based hybrid impulsive controllers, each characterized by unique triggering conditions. Utilizing advanced techniques in inequality and hybrid impulsive control, we establish the conditions necessary for achieving synchronization through innovative Lyapunov functions. Importantly, the developed controllers are theoretically optimized to minimize control costs, an essential consideration for their practical deployment. Finally, the effectiveness of our proposed approach is demonstrated through two illustrative simulation examples.","PeriodicalId":510138,"journal":{"name":"Fractal and Fractional","volume":"117 46","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractal and Fractional","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fractalfract8050297","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the asymptotic synchronization in fractional memristive neural networks of the Riemann–Liouville type, considering mixed time delays and jump mismatches. Addressing the challenges associated with discrepancies in the circuit switching speed and the accuracy of the memristor, this paper introduces an enhanced model that effectively navigates these complexities. We propose two novel event-based hybrid impulsive controllers, each characterized by unique triggering conditions. Utilizing advanced techniques in inequality and hybrid impulsive control, we establish the conditions necessary for achieving synchronization through innovative Lyapunov functions. Importantly, the developed controllers are theoretically optimized to minimize control costs, an essential consideration for their practical deployment. Finally, the effectiveness of our proposed approach is demonstrated through two illustrative simulation examples.
通过基于事件的混合脉冲控制器同步具有跳跃错配的分数延迟记忆神经网络
本研究探讨了黎曼-刘维尔类型的分数忆阻器神经网络的渐近同步问题,并考虑了混合时间延迟和跳跃失配问题。为了应对电路开关速度和忆阻器精度差异带来的挑战,本文引入了一个增强模型,以有效解决这些复杂问题。我们提出了两种新颖的基于事件的混合脉冲控制器,每种控制器都具有独特的触发条件。利用不等式和混合脉冲控制的先进技术,我们通过创新的 Lyapunov 函数建立了实现同步的必要条件。重要的是,我们对所开发的控制器进行了理论优化,以最大限度地降低控制成本,这对控制器的实际部署至关重要。最后,我们通过两个说明性的模拟示例,展示了我们提出的方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信