Despoina Ignatoglou, Achilleas Paliouras, E. Paraskevopoulos, N. Strimpakos, Paraskevi Bilika, Maria Papandreou, Eleni Kapreli
{"title":"Pole Dancing-Specific Muscle Strength: Development and Reliability of a Novel Assessment Protocol","authors":"Despoina Ignatoglou, Achilleas Paliouras, E. Paraskevopoulos, N. Strimpakos, Paraskevi Bilika, Maria Papandreou, Eleni Kapreli","doi":"10.3390/mps7030044","DOIUrl":null,"url":null,"abstract":"Background: Pole dancing is a physically demanding sport that combines dance and acrobatic movements on a vertical pole. Despite its highly growing popularity, there is currently limited research in the field. The aim of this study was to create and evaluate a strength assessment protocol for athletes in pole dancing, with a specific focus on functional positions on the pole. Methods: Thirty-two female pole dancing athletes participated in this study. Maximal voluntary isometric contractions (MVIC) were measured at three different sport-specific positions on the pole (shoulder abduction and adduction, and hip adduction), on two separate days (test and re-test) with a five to seven day interval between them. A hand-held dynamometer (Activ5- Activbody) stabilized on the pole was used for this study. Results: The intra-session reliability was good to excellent for all sports-specific positions and for both sides of the body, across all different movements (ICC = 0.837–0.960, SEM = 5.02Kg-2.24Kg, and SDD = 27.46%-14.92%). Slightly better results were found regarding inter-session reliability (ICC = 0.927–0.970, SEM = 3.72Kg-1.97Kg, and SDD = 22.86%-15.19%). There was not a statistically significant difference between the MVICs between the left and right or dominant and non-dominant side in shoulder abduction (p = 0.105) and hip adduction (p = 0.282), in contrast to shoulder adduction (p = 0.00). Conclusion: The strength assessment protocol developed in the current study has proven to be a reliable and functional tool, with the potential for utilization in clinical practice as part of objective strength testing. Further studies are needed in order to expand the protocol to other muscle groups and positions and to generalize the results in all pole dancing populations such as male athletes.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"124 17","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/mps7030044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Pole dancing is a physically demanding sport that combines dance and acrobatic movements on a vertical pole. Despite its highly growing popularity, there is currently limited research in the field. The aim of this study was to create and evaluate a strength assessment protocol for athletes in pole dancing, with a specific focus on functional positions on the pole. Methods: Thirty-two female pole dancing athletes participated in this study. Maximal voluntary isometric contractions (MVIC) were measured at three different sport-specific positions on the pole (shoulder abduction and adduction, and hip adduction), on two separate days (test and re-test) with a five to seven day interval between them. A hand-held dynamometer (Activ5- Activbody) stabilized on the pole was used for this study. Results: The intra-session reliability was good to excellent for all sports-specific positions and for both sides of the body, across all different movements (ICC = 0.837–0.960, SEM = 5.02Kg-2.24Kg, and SDD = 27.46%-14.92%). Slightly better results were found regarding inter-session reliability (ICC = 0.927–0.970, SEM = 3.72Kg-1.97Kg, and SDD = 22.86%-15.19%). There was not a statistically significant difference between the MVICs between the left and right or dominant and non-dominant side in shoulder abduction (p = 0.105) and hip adduction (p = 0.282), in contrast to shoulder adduction (p = 0.00). Conclusion: The strength assessment protocol developed in the current study has proven to be a reliable and functional tool, with the potential for utilization in clinical practice as part of objective strength testing. Further studies are needed in order to expand the protocol to other muscle groups and positions and to generalize the results in all pole dancing populations such as male athletes.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.