Time-Varying Function Matrix Projection Synchronization of Caputo Fractional-Order Uncertain Memristive Neural Networks with Multiple Delays via Mixed Open Loop Feedback Control and Impulsive Control

Hongguang Fan, Yue Rao, Kaibo Shi, Hui Wen
{"title":"Time-Varying Function Matrix Projection Synchronization of Caputo Fractional-Order Uncertain Memristive Neural Networks with Multiple Delays via Mixed Open Loop Feedback Control and Impulsive Control","authors":"Hongguang Fan, Yue Rao, Kaibo Shi, Hui Wen","doi":"10.3390/fractalfract8050301","DOIUrl":null,"url":null,"abstract":"This paper shows solicitude for the generalized projective synchronization of Caputo fractional-order uncertain memristive neural networks (FOUMNNs) with multiple delays. By extending the constant scale factor to the time-varying function matrix, we establish an extraordinary synchronization mode called time-varying function matrix projection synchronization (TFMPS), which is a generalized version of traditional matrix projection synchronization, modified projection synchronization, complete synchronization, and anti-synchronization. To achieve the goal of TFMPS, we design a novel mixed controller including the open loop feedback control and impulsive control, which employs the state information in the time-delayed interval and the sampling information at the impulse instants. It has a prominent advantage that impulse intervals are not restricted by time delays. To establish the connection between the error system and the auxiliary system, a generalized fractional-order comparison theorem with time-varying coefficients and impulses is established. Applying the stability theory, the comparison theorem, and the Laplace transform, new synchronization criteria of FOUMNNs are acquired under the mixed impulsive control schemes, and the derived synchronization theorem and corollary can effectively expand the correlative synchronization achievements of fractional-order systems.","PeriodicalId":510138,"journal":{"name":"Fractal and Fractional","volume":"88 20","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractal and Fractional","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fractalfract8050301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper shows solicitude for the generalized projective synchronization of Caputo fractional-order uncertain memristive neural networks (FOUMNNs) with multiple delays. By extending the constant scale factor to the time-varying function matrix, we establish an extraordinary synchronization mode called time-varying function matrix projection synchronization (TFMPS), which is a generalized version of traditional matrix projection synchronization, modified projection synchronization, complete synchronization, and anti-synchronization. To achieve the goal of TFMPS, we design a novel mixed controller including the open loop feedback control and impulsive control, which employs the state information in the time-delayed interval and the sampling information at the impulse instants. It has a prominent advantage that impulse intervals are not restricted by time delays. To establish the connection between the error system and the auxiliary system, a generalized fractional-order comparison theorem with time-varying coefficients and impulses is established. Applying the stability theory, the comparison theorem, and the Laplace transform, new synchronization criteria of FOUMNNs are acquired under the mixed impulsive control schemes, and the derived synchronization theorem and corollary can effectively expand the correlative synchronization achievements of fractional-order systems.
通过混合开环反馈控制和脉冲控制实现具有多重延迟的卡普托分数阶不确定膜神经网络的时变函数矩阵投影同步化
本文介绍了具有多重延迟的卡普托分数阶不确定记忆神经网络(FOUMNN)的广义投影同步。通过将恒定比例因子扩展到时变函数矩阵,我们建立了一种特殊的同步模式,称为时变函数矩阵投影同步(TFMPS),它是传统矩阵投影同步、修正投影同步、完全同步和反同步的广义版本。为了实现 TFMPS 的目标,我们设计了一种新型混合控制器,包括开环反馈控制和脉冲控制,它利用了延时区间的状态信息和脉冲时刻的采样信息。它的突出优点是脉冲间隔不受时间延迟的限制。为了建立误差系统和辅助系统之间的联系,建立了一个具有时变系数和脉冲的广义分数阶比较定理。应用稳定性理论、比较定理和拉普拉斯变换,获得了混合脉冲控制方案下 FOUMNNs 的新同步准则,推导出的同步定理和推论可有效扩展分数阶系统的相关同步成果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信