{"title":"A Novel Technique for Facial Recognition Based on the GSO-CNN Deep Learning Algorithm","authors":"Rana H. Al-Abboodi, A. Al-Ani","doi":"10.1155/2024/3443028","DOIUrl":null,"url":null,"abstract":"Face recognition is one of the important elements that can be used for securing the facilities, emotion recognition, sentiment exploration, fraud analysis, and traffic pattern analysis. Intelligent face recognition has yielded excellent accuracy in a controlled environment whereas vice versa in an uncontrolled environment. However, conventional methods can no longer satisfy the demand at present due to their low recognition accuracy and restrictions on many occasions. This study proposed an optimal deep learning-based face recognition system that improves the security of the model developed in the IoT cloud environment. Initially, the dataset of images was gathered from the public repository. The captured images are explored using image processing techniques like image preprocessing employing the Gaussian filter technique for removing the noise and smoothing the image. The histogram of oriented gradients (HOGs) is used for the image segmentation. The processed images are preserved at the cloud service layer. Extract features were linked to facial activities using the spatial-temporal interest point (STIP). On the other hand, the extracted feature vectors are investigated using galactic swarm optimization (GSO) techniques that give optimized feature vectors. The necessary features are selected using the gray level co-occurrence matrix (GLCM), which separates the statistical texture features. The GSO output is fed into the deep convolutional neural network (DCNN) that effectively trains the captured face images. This will allow the effectiveness of the GSO-CNN technique to be assessed in terms of recognition accuracy, recall, precision, and error rate.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":"22 10","pages":""},"PeriodicalIF":16.4000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2024/3443028","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Face recognition is one of the important elements that can be used for securing the facilities, emotion recognition, sentiment exploration, fraud analysis, and traffic pattern analysis. Intelligent face recognition has yielded excellent accuracy in a controlled environment whereas vice versa in an uncontrolled environment. However, conventional methods can no longer satisfy the demand at present due to their low recognition accuracy and restrictions on many occasions. This study proposed an optimal deep learning-based face recognition system that improves the security of the model developed in the IoT cloud environment. Initially, the dataset of images was gathered from the public repository. The captured images are explored using image processing techniques like image preprocessing employing the Gaussian filter technique for removing the noise and smoothing the image. The histogram of oriented gradients (HOGs) is used for the image segmentation. The processed images are preserved at the cloud service layer. Extract features were linked to facial activities using the spatial-temporal interest point (STIP). On the other hand, the extracted feature vectors are investigated using galactic swarm optimization (GSO) techniques that give optimized feature vectors. The necessary features are selected using the gray level co-occurrence matrix (GLCM), which separates the statistical texture features. The GSO output is fed into the deep convolutional neural network (DCNN) that effectively trains the captured face images. This will allow the effectiveness of the GSO-CNN technique to be assessed in terms of recognition accuracy, recall, precision, and error rate.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.