Axel J. Cimas , Francisco M. Pardini , Javier I. Amalvy
{"title":"Synthesis of novel stimuli-responsive hydrogels based on polyurethane","authors":"Axel J. Cimas , Francisco M. Pardini , Javier I. Amalvy","doi":"10.1080/1023666X.2024.2346432","DOIUrl":null,"url":null,"abstract":"<div><p>This article describes the study of a thermo-responsive hybrid systems based on polyurethane (PU) modified with sensitive acrylamide derivates. The hybrid systems were synthesized using PU and two acrylamide derivatives (<em>N</em>-isopropylacrylamide (NIPA) and <em>N</em>-isopropylmethacrylamide (NIPMA)) in different proportions. The systems were characterized using infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and dynamic light scattering (DLS). Water-uptake capacity and sedimentation rate were also determined. The results showed that the hybrids with 30% acrylamide derivate (AD) showed a T50 of approximately 360 °C indicating that thermal degradation decreased with the addition of NIPA and NIPMA. Additionally, the incorporation of AD increases the glass transition temperature from −34 to −22 °C when 30% AD was used. The hybrids with 30% AD showed a variation in the diameters (above 60%) when the temperature was decreased from 50 to 22 °C. These changes were attributed to the hydrophilic → hydrophobic transition that occurs when measuring below and above the low critical solution temperature (LCST) of the polymer. Furthermore, the extra methyl group in the structure of NIPMA makes the collapse less pronounced than in NIPA, decreasing the relative diameter change by 10%. Sedimentation tests showed that the addition of the hybrid hydrogels in the sand increased the time of decantation by 60%. So, the combination of two thermo-responsive polymers to alter the hydrophilic/hydrophobic balance allows these polymers to modify their conformation at a specific temperature and could be potentially useful as self-suspending support agents or drug delivery systems.</p></div>","PeriodicalId":14236,"journal":{"name":"International Journal of Polymer Analysis and Characterization","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Polymer Analysis and Characterization","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1023666X24000155","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
This article describes the study of a thermo-responsive hybrid systems based on polyurethane (PU) modified with sensitive acrylamide derivates. The hybrid systems were synthesized using PU and two acrylamide derivatives (N-isopropylacrylamide (NIPA) and N-isopropylmethacrylamide (NIPMA)) in different proportions. The systems were characterized using infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and dynamic light scattering (DLS). Water-uptake capacity and sedimentation rate were also determined. The results showed that the hybrids with 30% acrylamide derivate (AD) showed a T50 of approximately 360 °C indicating that thermal degradation decreased with the addition of NIPA and NIPMA. Additionally, the incorporation of AD increases the glass transition temperature from −34 to −22 °C when 30% AD was used. The hybrids with 30% AD showed a variation in the diameters (above 60%) when the temperature was decreased from 50 to 22 °C. These changes were attributed to the hydrophilic → hydrophobic transition that occurs when measuring below and above the low critical solution temperature (LCST) of the polymer. Furthermore, the extra methyl group in the structure of NIPMA makes the collapse less pronounced than in NIPA, decreasing the relative diameter change by 10%. Sedimentation tests showed that the addition of the hybrid hydrogels in the sand increased the time of decantation by 60%. So, the combination of two thermo-responsive polymers to alter the hydrophilic/hydrophobic balance allows these polymers to modify their conformation at a specific temperature and could be potentially useful as self-suspending support agents or drug delivery systems.
期刊介绍:
The scope of the journal is to publish original contributions and reviews on studies, methodologies, instrumentation, and applications involving the analysis and characterization of polymers and polymeric-based materials, including synthetic polymers, blends, composites, fibers, coatings, supramolecular structures, polysaccharides, and biopolymers. The Journal will accept papers and review articles on the following topics and research areas involving fundamental and applied studies of polymer analysis and characterization:
Characterization and analysis of new and existing polymers and polymeric-based materials.
Design and evaluation of analytical instrumentation and physical testing equipment.
Determination of molecular weight, size, conformation, branching, cross-linking, chemical structure, and sequence distribution.
Using separation, spectroscopic, and scattering techniques.
Surface characterization of polymeric materials.
Measurement of solution and bulk properties and behavior of polymers.
Studies involving structure-property-processing relationships, and polymer aging.
Analysis of oligomeric materials.
Analysis of polymer additives and decomposition products.