Magnetic nonreciprocity in a hybrid device of asymmetric artificial spin-ice-superconductors

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Chong Li, Peiyuan Huang, Chen-Guang Wang, Haojie Li, Yang-Yang Lyu, Wen-Cheng Yue, Zixiong Yuan, Tianyu Li, X. Tu, Tao Tao, Sining Dong, Liang He, X. Jia, G. Sun, Lin Kang, Huabing Wang, Peiheng Wu, Yong-Lei Wang
{"title":"Magnetic nonreciprocity in a hybrid device of asymmetric artificial spin-ice-superconductors","authors":"Chong Li, Peiyuan Huang, Chen-Guang Wang, Haojie Li, Yang-Yang Lyu, Wen-Cheng Yue, Zixiong Yuan, Tianyu Li, X. Tu, Tao Tao, Sining Dong, Liang He, X. Jia, G. Sun, Lin Kang, Huabing Wang, Peiheng Wu, Yong-Lei Wang","doi":"10.1088/0256-307x/41/6/067402","DOIUrl":null,"url":null,"abstract":"\n Controlling the size and distribution of potential barriers within a medium of interacting particles can unveil unique collective behaviors and innovative functionalities. In this study, we introduce a unique superconducting hybrid device using a novel artificial spin ice structure composed of asymmetric nanomagnets. This structure forms a distinctive superconducting pinning potential that steers unconventional motion of superconducting vortices, thereby inducing a magnetic nonreciprocal effect, in contrast to the electric nonreciprocal effect commonly observed in superconducting diodes. Furthermore, the polarity of the magnetic nonreciprocity is in-situ reversible through the tunable magnetic patterns of artificial spin ice. Our findings demonstrate that artificial spin ice not only precisely modulates superconducting characteristics but also opens the door to novel functionalities, offering a groundbreaking paradigm for superconducting electronics.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":"59 19","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/0256-307x/41/6/067402","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Controlling the size and distribution of potential barriers within a medium of interacting particles can unveil unique collective behaviors and innovative functionalities. In this study, we introduce a unique superconducting hybrid device using a novel artificial spin ice structure composed of asymmetric nanomagnets. This structure forms a distinctive superconducting pinning potential that steers unconventional motion of superconducting vortices, thereby inducing a magnetic nonreciprocal effect, in contrast to the electric nonreciprocal effect commonly observed in superconducting diodes. Furthermore, the polarity of the magnetic nonreciprocity is in-situ reversible through the tunable magnetic patterns of artificial spin ice. Our findings demonstrate that artificial spin ice not only precisely modulates superconducting characteristics but also opens the door to novel functionalities, offering a groundbreaking paradigm for superconducting electronics.
非对称人工自旋冰超导体混合装置中的磁不互斥性
控制相互作用粒子介质中势垒的大小和分布可以揭示独特的集体行为和创新功能。在这项研究中,我们利用由非对称纳米磁体组成的新型人工自旋冰结构,推出了一种独特的超导混合装置。这种结构形成了一种独特的超导钉势,可引导超导涡旋的非常规运动,从而诱发磁非互惠效应,这与超导二极管中常见的电非互惠效应截然不同。此外,通过人工自旋冰的可调磁性模式,磁性非互惠性的极性是可以就地逆转的。我们的研究结果表明,人造自旋冰不仅能精确调制超导特性,还能开启新功能的大门,为超导电子学提供了一个突破性的范例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊介绍: ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric. Indexed/​Abstracted: Web of Science SCIE Scopus CAS INSPEC Portico
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信