Arash Maghami, Nooshin Gholipour-Zanjani, Farhad Khorasheh, Mehdi Ardjmand
{"title":"Kinetic analysis for the interpretation of polychlorinated biphenyls removal mechanism","authors":"Arash Maghami, Nooshin Gholipour-Zanjani, Farhad Khorasheh, Mehdi Ardjmand","doi":"10.1002/kin.21728","DOIUrl":null,"url":null,"abstract":"<p>Removing polychlorinated biphenyls (PCBs) from subsurface water, soils, and transformer oil is crucial to save the environment from these pollutant materials. Hydrodechlorination (HDC) of PCBs consists of numerous chemical reactions and the simple kinetic models may not provide details for the process. To gain more awareness of the reaction mechanism, in the proposed approach, the isoconversional methods of the Friedman were investigated paralleling other kinetic models of Langmuir-Hinshelwood (L-H), Eley-Rideal (E-R), pseudo-first-order, and pseudo-second-order methods. The analysis was validated by laboratory results of HDC of contaminated transformer oil in front of Pd/MWCNTs. The most reactivity was observed for biphenyls with a higher number of chlorines. Finding a suitable model, Akaike Information Criteria were applied. It was attained that Friedman model was the most suitable for monitoring of HDC of PCBs in front of catalyst. Besides, E-R reaction was appropriate to elucidate the theoretical interpretations of the adsorption and desorption of reactants and chlorinated benzene.</p>","PeriodicalId":13894,"journal":{"name":"International Journal of Chemical Kinetics","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Chemical Kinetics","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/kin.21728","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Removing polychlorinated biphenyls (PCBs) from subsurface water, soils, and transformer oil is crucial to save the environment from these pollutant materials. Hydrodechlorination (HDC) of PCBs consists of numerous chemical reactions and the simple kinetic models may not provide details for the process. To gain more awareness of the reaction mechanism, in the proposed approach, the isoconversional methods of the Friedman were investigated paralleling other kinetic models of Langmuir-Hinshelwood (L-H), Eley-Rideal (E-R), pseudo-first-order, and pseudo-second-order methods. The analysis was validated by laboratory results of HDC of contaminated transformer oil in front of Pd/MWCNTs. The most reactivity was observed for biphenyls with a higher number of chlorines. Finding a suitable model, Akaike Information Criteria were applied. It was attained that Friedman model was the most suitable for monitoring of HDC of PCBs in front of catalyst. Besides, E-R reaction was appropriate to elucidate the theoretical interpretations of the adsorption and desorption of reactants and chlorinated benzene.
期刊介绍:
As the leading archival journal devoted exclusively to chemical kinetics, the International Journal of Chemical Kinetics publishes original research in gas phase, condensed phase, and polymer reaction kinetics, as well as biochemical and surface kinetics. The Journal seeks to be the primary archive for careful experimental measurements of reaction kinetics, in both simple and complex systems. The Journal also presents new developments in applied theoretical kinetics and publishes large kinetic models, and the algorithms and estimates used in these models. These include methods for handling the large reaction networks important in biochemistry, catalysis, and free radical chemistry. In addition, the Journal explores such topics as the quantitative relationships between molecular structure and chemical reactivity, organic/inorganic chemistry and reaction mechanisms, and the reactive chemistry at interfaces.