{"title":"Fabricating process of thin-strain sensor by utilizing wafer-level-packaging techniques","authors":"Takanori Aono, Masatoshi Kanamaru, Hiroshi Ikeda","doi":"10.1002/ecj.12450","DOIUrl":null,"url":null,"abstract":"<p>This research has developed a fabricating process of thin-strain sensor by utilizing wafer-level-packaging (WLP) techniques. The thickness of sensor makes thinner, its performance is able to highly increase. However, the thinner sensor was fragile, and so it was difficult to handle in post processes. Thus, a thin sensor with lid by utilizing WLP techniques, which is tough to break even when handled, is proposed in this research. More than 250-µm-deep grooves were fabricated around the lid by deep reactive ion etching. After the lid substrate was bonded on the sensor substrate with a resin, the sensor and lid substrates were respectively polished to 50 and 200 µm thickness. The lids were released along the grooves, and the 50-µm-thick strain sensors were able to be fabricated by utilizing WLP techniques. This sensor was used as a diaphragm to measure pressure. The sensors were assembled on a stainless steel housing without breakage. The performance of the developed sensor was almost showed with a conventional pressure sensor.</p>","PeriodicalId":50539,"journal":{"name":"Electronics and Communications in Japan","volume":"107 2","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronics and Communications in Japan","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ecj.12450","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This research has developed a fabricating process of thin-strain sensor by utilizing wafer-level-packaging (WLP) techniques. The thickness of sensor makes thinner, its performance is able to highly increase. However, the thinner sensor was fragile, and so it was difficult to handle in post processes. Thus, a thin sensor with lid by utilizing WLP techniques, which is tough to break even when handled, is proposed in this research. More than 250-µm-deep grooves were fabricated around the lid by deep reactive ion etching. After the lid substrate was bonded on the sensor substrate with a resin, the sensor and lid substrates were respectively polished to 50 and 200 µm thickness. The lids were released along the grooves, and the 50-µm-thick strain sensors were able to be fabricated by utilizing WLP techniques. This sensor was used as a diaphragm to measure pressure. The sensors were assembled on a stainless steel housing without breakage. The performance of the developed sensor was almost showed with a conventional pressure sensor.
期刊介绍:
Electronics and Communications in Japan (ECJ) publishes papers translated from the Transactions of the Institute of Electrical Engineers of Japan 12 times per year as an official journal of the Institute of Electrical Engineers of Japan (IEEJ). ECJ aims to provide world-class researches in highly diverse and sophisticated areas of Electrical and Electronic Engineering as well as in related disciplines with emphasis on electronic circuits, controls and communications. ECJ focuses on the following fields:
- Electronic theory and circuits,
- Control theory,
- Communications,
- Cryptography,
- Biomedical fields,
- Surveillance,
- Robotics,
- Sensors and actuators,
- Micromachines,
- Image analysis and signal analysis,
- New materials.
For works related to the science, technology, and applications of electric power, please refer to the sister journal Electrical Engineering in Japan (EEJ).