ALMA Band 3 Source Counts: A Machine Learning Approach to Contamination Mitigation below 5 Sigma

IF 3.2 Q2 ASTRONOMY & ASTROPHYSICS
Galaxies Pub Date : 2024-05-20 DOI:10.3390/galaxies12030026
I. Baronchelli, M. Bonato, G. De Zotti, Viviana Casasola, Michele Delli Veneri, Fabrizia Guglielmetti, E. Liuzzo, Rosita Paladino, Leonardo Trobbiani, Martin Zwaan
{"title":"ALMA Band 3 Source Counts: A Machine Learning Approach to Contamination Mitigation below 5 Sigma","authors":"I. Baronchelli, M. Bonato, G. De Zotti, Viviana Casasola, Michele Delli Veneri, Fabrizia Guglielmetti, E. Liuzzo, Rosita Paladino, Leonardo Trobbiani, Martin Zwaan","doi":"10.3390/galaxies12030026","DOIUrl":null,"url":null,"abstract":"We performed differential number counts down to 4.25 sigma using ALMA Band 3 calibrator images, which are known for their high dynamic range and susceptibility to various types of contamination. Estimating the fraction of contaminants is an intricate process due to correlated non-Gaussian noise, and it is often compounded by the presence of false positives generated during the cleaning phase. In addition, calibrator extensions further complicate the counting of background sources. In order to address these challenges, our strategy employs a machine learning-based approach utilizing the UMLAUT algorithm. UMLAUT assigns a value to each detection, and it considers how likely it is for there to be a genuine background source or a contaminant. With respect to this goal, we provide UMLAUT with eight observational input parameters, each automatically weighted using a gradient descent method. Our methodology significantly improves the precision of differential number counts, thus surpassing conventional techniques, including visual inspection. This study contributes to a better understanding of radio sources, particularly in the challenging sub-5 sigma regime, within the complex context of a high dynamic range of ALMA calibrator images.","PeriodicalId":37570,"journal":{"name":"Galaxies","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Galaxies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/galaxies12030026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

We performed differential number counts down to 4.25 sigma using ALMA Band 3 calibrator images, which are known for their high dynamic range and susceptibility to various types of contamination. Estimating the fraction of contaminants is an intricate process due to correlated non-Gaussian noise, and it is often compounded by the presence of false positives generated during the cleaning phase. In addition, calibrator extensions further complicate the counting of background sources. In order to address these challenges, our strategy employs a machine learning-based approach utilizing the UMLAUT algorithm. UMLAUT assigns a value to each detection, and it considers how likely it is for there to be a genuine background source or a contaminant. With respect to this goal, we provide UMLAUT with eight observational input parameters, each automatically weighted using a gradient descent method. Our methodology significantly improves the precision of differential number counts, thus surpassing conventional techniques, including visual inspection. This study contributes to a better understanding of radio sources, particularly in the challenging sub-5 sigma regime, within the complex context of a high dynamic range of ALMA calibrator images.
ALMA 波段 3 源计数:降低 5 西格玛以下污染的机器学习方法
我们使用 ALMA 波段 3 校准图像进行了低至 4.25 sigma 的差分数字计数,众所周知,这些图像的动态范围很高,而且容易受到各种类型的污染。由于相关的非高斯噪声,估算污染物的比例是一个复杂的过程,而在清洁阶段产生的假阳性往往会使这一过程变得更加复杂。此外,校准器的扩展也使背景源的计数变得更加复杂。为了应对这些挑战,我们的策略采用了基于机器学习的 UMLAUT 算法。UMLAUT 会为每次检测分配一个值,并考虑存在真正背景源或污染物的可能性有多大。为此,我们为 UMLAUT 提供了八个观测输入参数,每个参数都使用梯度下降法自动加权。我们的方法大大提高了差分数字计数的精度,从而超越了包括目测在内的传统技术。这项研究有助于在高动态范围的 ALMA 校准图像的复杂背景下更好地了解射电源,尤其是具有挑战性的 5 sigma 以下的射电源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Galaxies
Galaxies Physics and Astronomy-Astronomy and Astrophysics
CiteScore
4.90
自引率
12.00%
发文量
100
审稿时长
11 weeks
期刊介绍: Es una revista internacional de acceso abierto revisada por pares que proporciona un foro avanzado para estudios relacionados con astronomía, astrofísica y cosmología. Areas temáticas Astronomía Astrofísica Cosmología Astronomía observacional: radio, infrarrojo, óptico, rayos X, neutrino, etc. Ciencia planetaria Equipos y tecnologías de astronomía. Ingeniería Aeroespacial Análisis de datos astronómicos. Astroquímica y Astrobiología. Arqueoastronomía Historia de la astronomía y cosmología. Problemas filosóficos en cosmología.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信