Convergence analysis of a L1‐ADI scheme for two‐dimensional multiterm reaction‐subdiffusion equation

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Yubing Jiang, Hu Chen
{"title":"Convergence analysis of a L1‐ADI scheme for two‐dimensional multiterm reaction‐subdiffusion equation","authors":"Yubing Jiang, Hu Chen","doi":"10.1002/num.23115","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the numerical approximation for a two‐dimensional multiterm reaction‐subdiffusion equation, where we adopt an alternating direction implicit (ADI) method combined with the L1 approximation for the multiterm time Caputo fractional derivatives of orders between 0 and 1. Stability and convergence of the full‐discrete L1‐ADI scheme are established. The final convergence in time direction is point‐wise, that is, at . Numerical results are given to confirm our theoretical results.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/num.23115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we consider the numerical approximation for a two‐dimensional multiterm reaction‐subdiffusion equation, where we adopt an alternating direction implicit (ADI) method combined with the L1 approximation for the multiterm time Caputo fractional derivatives of orders between 0 and 1. Stability and convergence of the full‐discrete L1‐ADI scheme are established. The final convergence in time direction is point‐wise, that is, at . Numerical results are given to confirm our theoretical results.
二维多项反应-次扩散方程的 L1-ADI 方案收敛性分析
本文考虑了二维多期反应-次扩散方程的数值近似,采用交替方向隐式(ADI)方法结合 L1 近似来求取阶数介于 0 和 1 之间的多期时间卡普托分数导数。 建立了全离散 L1-ADI 方案的稳定性和收敛性。在时间方向上的最终收敛是点式的,即在 。给出的数值结果证实了我们的理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信