Uniaxial-Stress Driven Performance Enhancement of Multi-Beam Spark Plasma Sintered BiSbTe/Epoxy Flexible Films

IF 6.4 3区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Xiaoling Ai, Shaoqiu Ke, Xiaolei Nie, Tiantian Chen, Dong Liang, Kai Fu, Wanting Zhu, Ping Wei, Wenyu Zhao, Qingjie Zhang
{"title":"Uniaxial-Stress Driven Performance Enhancement of Multi-Beam Spark Plasma Sintered BiSbTe/Epoxy Flexible Films","authors":"Xiaoling Ai,&nbsp;Shaoqiu Ke,&nbsp;Xiaolei Nie,&nbsp;Tiantian Chen,&nbsp;Dong Liang,&nbsp;Kai Fu,&nbsp;Wanting Zhu,&nbsp;Ping Wei,&nbsp;Wenyu Zhao,&nbsp;Qingjie Zhang","doi":"10.1002/admt.202302226","DOIUrl":null,"url":null,"abstract":"<p>The multi-beam discharge plasma sintering (MB-SPS) method is successfully applied to the preparation of Bi<sub>2</sub>Te<sub>3</sub>-based thermoelectric (TE) films with insulating substrates. Herein, the impact of uniaxial stress on the microstructure evolution and TE performance are explored systematically. The results indicate that the increase of uniaxial stress promotes the preferential growth of Bi<sub>0.5</sub>Sb<sub>1.5</sub>Te<sub>3</sub> (BST) grains along the (000<i>l</i>) crystal plane, leading to the remarkable increase in carrier mobility. The maximum (000<i>l</i>) preferential orientation factor reaches 80% for the BST/epoxy (EP) film sintered under 25 MPa, which is 3.08 times higher than that of BST/EP film sintered at 10 MPa. While the highest power factor reaches 2.36 mW m<sup>−1</sup> K<sup>−2</sup> at 300 K for the BST/EP film sintered under 20 MPa, increased by 97% as compared with that of the film sintered under 10 MPa. This work once again confirms that the MB-SPS technology is an effective approach to prepare high-performance Bi<sub>2</sub>Te<sub>3</sub>-based films with insulating substrates and demonstrates that the (000<i>l</i>) preferential orientation and TE performance of the films can be further enhanced by an appropriate uniaxial stress.</p>","PeriodicalId":7292,"journal":{"name":"Advanced Materials Technologies","volume":null,"pages":null},"PeriodicalIF":6.4000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials Technologies","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/admt.202302226","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The multi-beam discharge plasma sintering (MB-SPS) method is successfully applied to the preparation of Bi2Te3-based thermoelectric (TE) films with insulating substrates. Herein, the impact of uniaxial stress on the microstructure evolution and TE performance are explored systematically. The results indicate that the increase of uniaxial stress promotes the preferential growth of Bi0.5Sb1.5Te3 (BST) grains along the (000l) crystal plane, leading to the remarkable increase in carrier mobility. The maximum (000l) preferential orientation factor reaches 80% for the BST/epoxy (EP) film sintered under 25 MPa, which is 3.08 times higher than that of BST/EP film sintered at 10 MPa. While the highest power factor reaches 2.36 mW m−1 K−2 at 300 K for the BST/EP film sintered under 20 MPa, increased by 97% as compared with that of the film sintered under 10 MPa. This work once again confirms that the MB-SPS technology is an effective approach to prepare high-performance Bi2Te3-based films with insulating substrates and demonstrates that the (000l) preferential orientation and TE performance of the films can be further enhanced by an appropriate uniaxial stress.

Abstract Image

多束火花等离子烧结 BiSbTe/Epoxy 柔性薄膜的单轴应力驱动性能提升
多束放电等离子烧结(MB-SPS)方法被成功应用于制备基于 Bi2Te3 的绝缘基底热电(TE)薄膜。本文系统地探讨了单轴应力对微结构演变和 TE 性能的影响。结果表明,单轴应力的增加促进了沿 (000l) 晶面的 Bi0.5Sb1.5Te3 (BST) 晶粒的优先生长,从而显著提高了载流子迁移率。在 25 MPa 下烧结的 BST/epoxy (EP) 薄膜的最大(000l)优先取向因子达到 80%,是在 10 MPa 下烧结的 BST/EP 薄膜的 3.08 倍。而在 20 兆帕下烧结的 BST/EP 薄膜在 300 K 时的最高功率因数达到 2.36 mW m-1 K-2,比在 10 兆帕下烧结的薄膜提高了 97%。这项工作再次证实,MB-SPS 技术是制备具有绝缘基底的高性能 Bi2Te3 基薄膜的有效方法,并证明了通过适当的单轴应力可以进一步提高薄膜的(000l)优先取向和 TE 性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Materials Technologies
Advanced Materials Technologies Materials Science-General Materials Science
CiteScore
10.20
自引率
4.40%
发文量
566
期刊介绍: Advanced Materials Technologies Advanced Materials Technologies is the new home for all technology-related materials applications research, with particular focus on advanced device design, fabrication and integration, as well as new technologies based on novel materials. It bridges the gap between fundamental laboratory research and industry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信