Bailin Yang, Tianxiang Wei, Frederick W. B. Li, Xiaohui Liang, Zhigang Deng, Yili Fang
{"title":"Color Theme Evaluation through User Preference Modeling","authors":"Bailin Yang, Tianxiang Wei, Frederick W. B. Li, Xiaohui Liang, Zhigang Deng, Yili Fang","doi":"10.1145/3665329","DOIUrl":null,"url":null,"abstract":"Color composition (or color theme) is a key factor to determine how well a piece of art work or graphical design is perceived by humans. Despite a few color harmony models have been proposed, their results are often less satisfactory since they mostly neglect the variations of aesthetic cognition among individuals and treat the influence of all ratings equally as if they were all rated by the same anonymous user. To overcome this issue, in this paper we propose a new color theme evaluation model by combining a back propagation neural network and a kernel probabilistic model to infer both the color theme rating and the user aesthetic preference. Our experiment results show that our model can predict more accurate and personalized color theme ratings than state of the art methods. Our work is also the first-of-its-kind effort to quantitatively evaluate the correlation between user aesthetic preferences and color harmonies of five-color themes, and study such a relation for users with different aesthetic cognition.","PeriodicalId":50921,"journal":{"name":"ACM Transactions on Applied Perception","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Applied Perception","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3665329","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Color composition (or color theme) is a key factor to determine how well a piece of art work or graphical design is perceived by humans. Despite a few color harmony models have been proposed, their results are often less satisfactory since they mostly neglect the variations of aesthetic cognition among individuals and treat the influence of all ratings equally as if they were all rated by the same anonymous user. To overcome this issue, in this paper we propose a new color theme evaluation model by combining a back propagation neural network and a kernel probabilistic model to infer both the color theme rating and the user aesthetic preference. Our experiment results show that our model can predict more accurate and personalized color theme ratings than state of the art methods. Our work is also the first-of-its-kind effort to quantitatively evaluate the correlation between user aesthetic preferences and color harmonies of five-color themes, and study such a relation for users with different aesthetic cognition.
期刊介绍:
ACM Transactions on Applied Perception (TAP) aims to strengthen the synergy between computer science and psychology/perception by publishing top quality papers that help to unify research in these fields.
The journal publishes inter-disciplinary research of significant and lasting value in any topic area that spans both Computer Science and Perceptual Psychology. All papers must incorporate both perceptual and computer science components.